| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brrelex12 | GIF version | ||
| Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brrelex12 | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 4726 | . . . . 5 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 2 | 1 | biimpi 120 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
| 3 | 2 | ssbrd 4126 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐴(V × V)𝐵)) |
| 4 | 3 | imp 124 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴(V × V)𝐵) |
| 5 | brxp 4750 | . 2 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 6 | 4, 5 | sylib 122 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 class class class wbr 4083 × cxp 4717 Rel wrel 4724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 |
| This theorem is referenced by: brrelex1 4758 brrelex 4759 brrelex2 4760 brrelex12i 4761 relbrcnvg 5107 ovprc 6037 ersym 6692 relelec 6722 encv 6893 dvdsrd 14058 |
| Copyright terms: Public domain | W3C validator |