ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex12 GIF version

Theorem brrelex12 4666
Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex12 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem brrelex12
StepHypRef Expression
1 df-rel 4635 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 120 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32ssbrd 4048 . . 3 (Rel 𝑅 → (𝐴𝑅𝐵𝐴(V × V)𝐵))
43imp 124 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴(V × V)𝐵)
5 brxp 4659 . 2 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
64, 5sylib 122 1 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  Vcvv 2739  wss 3131   class class class wbr 4005   × cxp 4626  Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635
This theorem is referenced by:  brrelex1  4667  brrelex  4668  brrelex2  4669  brrelex12i  4670  relbrcnvg  5009  ovprc  5912  ersym  6549  relelec  6577  encv  6748  dvdsrd  13268
  Copyright terms: Public domain W3C validator