ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex12 GIF version

Theorem brrelex12 4697
Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex12 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem brrelex12
StepHypRef Expression
1 df-rel 4666 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 120 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32ssbrd 4072 . . 3 (Rel 𝑅 → (𝐴𝑅𝐵𝐴(V × V)𝐵))
43imp 124 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴(V × V)𝐵)
5 brxp 4690 . 2 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
64, 5sylib 122 1 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  Vcvv 2760  wss 3153   class class class wbr 4029   × cxp 4657  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666
This theorem is referenced by:  brrelex1  4698  brrelex  4699  brrelex2  4700  brrelex12i  4701  relbrcnvg  5044  ovprc  5953  ersym  6599  relelec  6629  encv  6800  dvdsrd  13590
  Copyright terms: Public domain W3C validator