Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3caopr | Unicode version |
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.) |
Ref | Expression |
---|---|
seqcaopr.1 | |
seqcaopr.2 | |
seqcaopr.3 | |
seqcaopr.4 | |
seq3caopr.5 | |
seq3caopr.6 | |
seq3caopr.7 |
Ref | Expression |
---|---|
seq3caopr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqcaopr.1 | . . 3 | |
2 | 1 | caovclg 5994 | . 2 |
3 | simpl 108 | . . . . . . 7 | |
4 | simprrl 529 | . . . . . . 7 | |
5 | simprlr 528 | . . . . . . 7 | |
6 | seqcaopr.2 | . . . . . . . 8 | |
7 | 6 | caovcomg 5997 | . . . . . . 7 |
8 | 3, 4, 5, 7 | syl12anc 1226 | . . . . . 6 |
9 | 8 | oveq1d 5857 | . . . . 5 |
10 | simprrr 530 | . . . . . 6 | |
11 | seqcaopr.3 | . . . . . . 7 | |
12 | 11 | caovassg 6000 | . . . . . 6 |
13 | 3, 4, 5, 10, 12 | syl13anc 1230 | . . . . 5 |
14 | 11 | caovassg 6000 | . . . . . 6 |
15 | 3, 5, 4, 10, 14 | syl13anc 1230 | . . . . 5 |
16 | 9, 13, 15 | 3eqtr3d 2206 | . . . 4 |
17 | 16 | oveq2d 5858 | . . 3 |
18 | simprll 527 | . . . 4 | |
19 | 1 | caovclg 5994 | . . . . 5 |
20 | 3, 5, 10, 19 | syl12anc 1226 | . . . 4 |
21 | 11 | caovassg 6000 | . . . 4 |
22 | 3, 18, 4, 20, 21 | syl13anc 1230 | . . 3 |
23 | 1 | caovclg 5994 | . . . . 5 |
24 | 23 | adantrl 470 | . . . 4 |
25 | 11 | caovassg 6000 | . . . 4 |
26 | 3, 18, 5, 24, 25 | syl13anc 1230 | . . 3 |
27 | 17, 22, 26 | 3eqtr4d 2208 | . 2 |
28 | seqcaopr.4 | . 2 | |
29 | seq3caopr.5 | . 2 | |
30 | seq3caopr.6 | . 2 | |
31 | seq3caopr.7 | . 2 | |
32 | 2, 2, 27, 28, 29, 30, 31 | seq3caopr2 10417 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cfv 5188 (class class class)co 5842 cuz 9466 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 df-seqfrec 10381 |
This theorem is referenced by: ser3add 10440 prod3fmul 11482 |
Copyright terms: Public domain | W3C validator |