ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3caopr Unicode version

Theorem seq3caopr 10451
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
seqcaopr.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqcaopr.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
seqcaopr.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seqcaopr.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3caopr.5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  S
)
seq3caopr.6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  S
)
seq3caopr.7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  .+  ( G `  k ) ) )
Assertion
Ref Expression
seq3caopr  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  (  seq M ( 
.+  ,  G ) `
 N ) ) )
Distinct variable groups:    .+ , k, x, y, z    k, F   
k, G    k, H    k, M    k, N    S, k, x, y, z    ph, k, x, y, z
Allowed substitution hints:    F( x, y, z)    G( x, y, z)    H( x, y, z)    M( x, y, z)    N( x, y, z)

Proof of Theorem seq3caopr
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqcaopr.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
21caovclg 6017 . 2  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
3 simpl 109 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  ->  ph )
4 simprrl 539 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
c  e.  S )
5 simprlr 538 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
b  e.  S )
6 seqcaopr.2 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
76caovcomg 6020 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  S  /\  b  e.  S ) )  -> 
( c  .+  b
)  =  ( b 
.+  c ) )
83, 4, 5, 7syl12anc 1236 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  b
)  =  ( b 
.+  c ) )
98oveq1d 5880 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( ( b  .+  c ) 
.+  d ) )
10 simprrr 540 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
d  e.  S )
11 seqcaopr.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
1211caovassg 6023 . . . . . 6  |-  ( (
ph  /\  ( c  e.  S  /\  b  e.  S  /\  d  e.  S ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( c 
.+  ( b  .+  d ) ) )
133, 4, 5, 10, 12syl13anc 1240 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( c 
.+  ( b  .+  d ) ) )
1411caovassg 6023 . . . . . 6  |-  ( (
ph  /\  ( b  e.  S  /\  c  e.  S  /\  d  e.  S ) )  -> 
( ( b  .+  c )  .+  d
)  =  ( b 
.+  ( c  .+  d ) ) )
153, 5, 4, 10, 14syl13anc 1240 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( b  .+  c )  .+  d
)  =  ( b 
.+  ( c  .+  d ) ) )
169, 13, 153eqtr3d 2216 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  (
b  .+  d )
)  =  ( b 
.+  ( c  .+  d ) ) )
1716oveq2d 5881 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( a  .+  (
c  .+  ( b  .+  d ) ) )  =  ( a  .+  ( b  .+  (
c  .+  d )
) ) )
18 simprll 537 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
a  e.  S )
191caovclg 6017 . . . . 5  |-  ( (
ph  /\  ( b  e.  S  /\  d  e.  S ) )  -> 
( b  .+  d
)  e.  S )
203, 5, 10, 19syl12anc 1236 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( b  .+  d
)  e.  S )
2111caovassg 6023 . . . 4  |-  ( (
ph  /\  ( a  e.  S  /\  c  e.  S  /\  (
b  .+  d )  e.  S ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( a 
.+  ( c  .+  ( b  .+  d
) ) ) )
223, 18, 4, 20, 21syl13anc 1240 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( a 
.+  ( c  .+  ( b  .+  d
) ) ) )
231caovclg 6017 . . . . 5  |-  ( (
ph  /\  ( c  e.  S  /\  d  e.  S ) )  -> 
( c  .+  d
)  e.  S )
2423adantrl 478 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  d
)  e.  S )
2511caovassg 6023 . . . 4  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S  /\  (
c  .+  d )  e.  S ) )  -> 
( ( a  .+  b )  .+  (
c  .+  d )
)  =  ( a 
.+  ( b  .+  ( c  .+  d
) ) ) )
263, 18, 5, 24, 25syl13anc 1240 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  b )  .+  (
c  .+  d )
)  =  ( a 
.+  ( b  .+  ( c  .+  d
) ) ) )
2717, 22, 263eqtr4d 2218 . 2  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( ( a  .+  b ) 
.+  ( c  .+  d ) ) )
28 seqcaopr.4 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
29 seq3caopr.5 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  S
)
30 seq3caopr.6 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  S
)
31 seq3caopr.7 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  .+  ( G `  k ) ) )
322, 2, 27, 28, 29, 30, 31seq3caopr2 10450 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  (  seq M ( 
.+  ,  G ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   ` cfv 5208  (class class class)co 5865   ZZ>=cuz 9499    seqcseq 10413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-n0 9148  df-z 9225  df-uz 9500  df-fz 9978  df-fzo 10111  df-seqfrec 10414
This theorem is referenced by:  ser3add  10473  prod3fmul  11515
  Copyright terms: Public domain W3C validator