ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3caopr Unicode version

Theorem seq3caopr 10677
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
seq3caopr.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3caopr.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
seq3caopr.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seq3caopr.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3caopr.5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  S
)
seq3caopr.6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  S
)
seq3caopr.7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  .+  ( G `  k ) ) )
Assertion
Ref Expression
seq3caopr  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  (  seq M ( 
.+  ,  G ) `
 N ) ) )
Distinct variable groups:    .+ , k, x, y, z    k, F   
k, G    k, H    k, M    k, N    S, k, x, y, z    ph, k, x, y, z
Allowed substitution hints:    F( x, y, z)    G( x, y, z)    H( x, y, z)    M( x, y, z)    N( x, y, z)

Proof of Theorem seq3caopr
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3caopr.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
21caovclg 6122 . 2  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
3 simpl 109 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  ->  ph )
4 simprrl 539 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
c  e.  S )
5 simprlr 538 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
b  e.  S )
6 seq3caopr.2 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
76caovcomg 6125 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  S  /\  b  e.  S ) )  -> 
( c  .+  b
)  =  ( b 
.+  c ) )
83, 4, 5, 7syl12anc 1248 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  b
)  =  ( b 
.+  c ) )
98oveq1d 5982 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( ( b  .+  c ) 
.+  d ) )
10 simprrr 540 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
d  e.  S )
11 seq3caopr.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
1211caovassg 6128 . . . . . 6  |-  ( (
ph  /\  ( c  e.  S  /\  b  e.  S  /\  d  e.  S ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( c 
.+  ( b  .+  d ) ) )
133, 4, 5, 10, 12syl13anc 1252 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( c 
.+  ( b  .+  d ) ) )
1411caovassg 6128 . . . . . 6  |-  ( (
ph  /\  ( b  e.  S  /\  c  e.  S  /\  d  e.  S ) )  -> 
( ( b  .+  c )  .+  d
)  =  ( b 
.+  ( c  .+  d ) ) )
153, 5, 4, 10, 14syl13anc 1252 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( b  .+  c )  .+  d
)  =  ( b 
.+  ( c  .+  d ) ) )
169, 13, 153eqtr3d 2248 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  (
b  .+  d )
)  =  ( b 
.+  ( c  .+  d ) ) )
1716oveq2d 5983 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( a  .+  (
c  .+  ( b  .+  d ) ) )  =  ( a  .+  ( b  .+  (
c  .+  d )
) ) )
18 simprll 537 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
a  e.  S )
191caovclg 6122 . . . . 5  |-  ( (
ph  /\  ( b  e.  S  /\  d  e.  S ) )  -> 
( b  .+  d
)  e.  S )
203, 5, 10, 19syl12anc 1248 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( b  .+  d
)  e.  S )
2111caovassg 6128 . . . 4  |-  ( (
ph  /\  ( a  e.  S  /\  c  e.  S  /\  (
b  .+  d )  e.  S ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( a 
.+  ( c  .+  ( b  .+  d
) ) ) )
223, 18, 4, 20, 21syl13anc 1252 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( a 
.+  ( c  .+  ( b  .+  d
) ) ) )
231caovclg 6122 . . . . 5  |-  ( (
ph  /\  ( c  e.  S  /\  d  e.  S ) )  -> 
( c  .+  d
)  e.  S )
2423adantrl 478 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  d
)  e.  S )
2511caovassg 6128 . . . 4  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S  /\  (
c  .+  d )  e.  S ) )  -> 
( ( a  .+  b )  .+  (
c  .+  d )
)  =  ( a 
.+  ( b  .+  ( c  .+  d
) ) ) )
263, 18, 5, 24, 25syl13anc 1252 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  b )  .+  (
c  .+  d )
)  =  ( a 
.+  ( b  .+  ( c  .+  d
) ) ) )
2717, 22, 263eqtr4d 2250 . 2  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( ( a  .+  b ) 
.+  ( c  .+  d ) ) )
28 seq3caopr.4 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
29 seq3caopr.5 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  S
)
30 seq3caopr.6 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  S
)
31 seq3caopr.7 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  .+  ( G `  k ) ) )
322, 2, 27, 28, 29, 30, 31seq3caopr2 10675 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  (  seq M ( 
.+  ,  G ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   ZZ>=cuz 9683    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-seqfrec 10630
This theorem is referenced by:  ser3add  10704  prod3fmul  11967
  Copyright terms: Public domain W3C validator