ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofcom Unicode version

Theorem caofcom 6170
Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofcom.3  |-  ( ph  ->  G : A --> S )
caofcom.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y )  =  ( y R x ) )
Assertion
Ref Expression
caofcom  |-  ( ph  ->  ( F  oF R G )  =  ( G  oF R F ) )
Distinct variable groups:    x, y, F   
x, G, y    ph, x, y    x, R, y    x, S, y
Allowed substitution hints:    A( x, y)    V( x, y)

Proof of Theorem caofcom
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . 6  |-  ( ph  ->  F : A --> S )
21ffvelcdmda 5700 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
3 caofcom.3 . . . . . 6  |-  ( ph  ->  G : A --> S )
43ffvelcdmda 5700 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
52, 4jca 306 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
)  e.  S  /\  ( G `  w )  e.  S ) )
6 caofcom.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y )  =  ( y R x ) )
76caovcomg 6083 . . . 4  |-  ( (
ph  /\  ( ( F `  w )  e.  S  /\  ( G `  w )  e.  S ) )  -> 
( ( F `  w ) R ( G `  w ) )  =  ( ( G `  w ) R ( F `  w ) ) )
85, 7syldan 282 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) R ( G `
 w ) )  =  ( ( G `
 w ) R ( F `  w
) ) )
98mpteq2dva 4124 . 2  |-  ( ph  ->  ( w  e.  A  |->  ( ( F `  w ) R ( G `  w ) ) )  =  ( w  e.  A  |->  ( ( G `  w
) R ( F `
 w ) ) ) )
10 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
111feqmptd 5617 . . 3  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
123feqmptd 5617 . . 3  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
1310, 2, 4, 11, 12offval2 6155 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( w  e.  A  |->  ( ( F `  w ) R ( G `  w ) ) ) )
1410, 4, 2, 12, 11offval2 6155 . 2  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) ) )
159, 13, 143eqtr4d 2239 1  |-  ( ph  ->  ( F  oF R G )  =  ( G  oF R F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5925    oFcof 6137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator