Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvmpt | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
Ref | Expression |
---|---|
cbvmpt.1 | |
cbvmpt.2 | |
cbvmpt.3 |
Ref | Expression |
---|---|
cbvmpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . . . 4 | |
2 | nfv 1508 | . . . . 5 | |
3 | nfs1v 1919 | . . . . 5 | |
4 | 2, 3 | nfan 1545 | . . . 4 |
5 | eleq1 2220 | . . . . 5 | |
6 | sbequ12 1751 | . . . . 5 | |
7 | 5, 6 | anbi12d 465 | . . . 4 |
8 | 1, 4, 7 | cbvopab1 4037 | . . 3 |
9 | nfv 1508 | . . . . 5 | |
10 | cbvmpt.1 | . . . . . . 7 | |
11 | 10 | nfeq2 2311 | . . . . . 6 |
12 | 11 | nfsb 1926 | . . . . 5 |
13 | 9, 12 | nfan 1545 | . . . 4 |
14 | nfv 1508 | . . . 4 | |
15 | eleq1 2220 | . . . . 5 | |
16 | sbequ 1820 | . . . . . 6 | |
17 | cbvmpt.2 | . . . . . . . 8 | |
18 | 17 | nfeq2 2311 | . . . . . . 7 |
19 | cbvmpt.3 | . . . . . . . 8 | |
20 | 19 | eqeq2d 2169 | . . . . . . 7 |
21 | 18, 20 | sbie 1771 | . . . . . 6 |
22 | 16, 21 | bitrdi 195 | . . . . 5 |
23 | 15, 22 | anbi12d 465 | . . . 4 |
24 | 13, 14, 23 | cbvopab1 4037 | . . 3 |
25 | 8, 24 | eqtri 2178 | . 2 |
26 | df-mpt 4027 | . 2 | |
27 | df-mpt 4027 | . 2 | |
28 | 25, 26, 27 | 3eqtr4i 2188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wsb 1742 wcel 2128 wnfc 2286 copab 4024 cmpt 4025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4026 df-mpt 4027 |
This theorem is referenced by: cbvmptv 4060 dffn5imf 5520 fvmpts 5543 fvmpt2 5548 mptfvex 5550 fmptcof 5631 fmptcos 5632 fliftfuns 5743 offval2 6041 qliftfuns 6557 cc2 7170 summodclem2a 11260 zsumdc 11263 fsum3cvg2 11273 cbvprod 11437 zproddc 11458 fprodseq 11462 cnmpt1t 12645 fsumcncntop 12916 limcmpted 12992 |
Copyright terms: Public domain | W3C validator |