Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvmpt | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
Ref | Expression |
---|---|
cbvmpt.1 | |
cbvmpt.2 | |
cbvmpt.3 |
Ref | Expression |
---|---|
cbvmpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . . 4 | |
2 | nfv 1521 | . . . . 5 | |
3 | nfs1v 1932 | . . . . 5 | |
4 | 2, 3 | nfan 1558 | . . . 4 |
5 | eleq1 2233 | . . . . 5 | |
6 | sbequ12 1764 | . . . . 5 | |
7 | 5, 6 | anbi12d 470 | . . . 4 |
8 | 1, 4, 7 | cbvopab1 4062 | . . 3 |
9 | nfv 1521 | . . . . 5 | |
10 | cbvmpt.1 | . . . . . . 7 | |
11 | 10 | nfeq2 2324 | . . . . . 6 |
12 | 11 | nfsb 1939 | . . . . 5 |
13 | 9, 12 | nfan 1558 | . . . 4 |
14 | nfv 1521 | . . . 4 | |
15 | eleq1 2233 | . . . . 5 | |
16 | sbequ 1833 | . . . . . 6 | |
17 | cbvmpt.2 | . . . . . . . 8 | |
18 | 17 | nfeq2 2324 | . . . . . . 7 |
19 | cbvmpt.3 | . . . . . . . 8 | |
20 | 19 | eqeq2d 2182 | . . . . . . 7 |
21 | 18, 20 | sbie 1784 | . . . . . 6 |
22 | 16, 21 | bitrdi 195 | . . . . 5 |
23 | 15, 22 | anbi12d 470 | . . . 4 |
24 | 13, 14, 23 | cbvopab1 4062 | . . 3 |
25 | 8, 24 | eqtri 2191 | . 2 |
26 | df-mpt 4052 | . 2 | |
27 | df-mpt 4052 | . 2 | |
28 | 25, 26, 27 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wsb 1755 wcel 2141 wnfc 2299 copab 4049 cmpt 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-mpt 4052 |
This theorem is referenced by: cbvmptv 4085 dffn5imf 5551 fvmpts 5574 fvmpt2 5579 mptfvex 5581 fmptcof 5663 fmptcos 5664 fliftfuns 5777 offval2 6076 qliftfuns 6597 cc2 7229 summodclem2a 11344 zsumdc 11347 fsum3cvg2 11357 cbvprod 11521 zproddc 11542 fprodseq 11546 pcmptdvds 12297 cnmpt1t 13079 fsumcncntop 13350 limcmpted 13426 |
Copyright terms: Public domain | W3C validator |