| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpt | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
| Ref | Expression |
|---|---|
| cbvmpt.1 |
|
| cbvmpt.2 |
|
| cbvmpt.3 |
|
| Ref | Expression |
|---|---|
| cbvmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 |
. . . 4
| |
| 2 | nfv 1550 |
. . . . 5
| |
| 3 | nfs1v 1966 |
. . . . 5
| |
| 4 | 2, 3 | nfan 1587 |
. . . 4
|
| 5 | eleq1 2267 |
. . . . 5
| |
| 6 | sbequ12 1793 |
. . . . 5
| |
| 7 | 5, 6 | anbi12d 473 |
. . . 4
|
| 8 | 1, 4, 7 | cbvopab1 4116 |
. . 3
|
| 9 | nfv 1550 |
. . . . 5
| |
| 10 | cbvmpt.1 |
. . . . . . 7
| |
| 11 | 10 | nfeq2 2359 |
. . . . . 6
|
| 12 | 11 | nfsb 1973 |
. . . . 5
|
| 13 | 9, 12 | nfan 1587 |
. . . 4
|
| 14 | nfv 1550 |
. . . 4
| |
| 15 | eleq1 2267 |
. . . . 5
| |
| 16 | sbequ 1862 |
. . . . . 6
| |
| 17 | cbvmpt.2 |
. . . . . . . 8
| |
| 18 | 17 | nfeq2 2359 |
. . . . . . 7
|
| 19 | cbvmpt.3 |
. . . . . . . 8
| |
| 20 | 19 | eqeq2d 2216 |
. . . . . . 7
|
| 21 | 18, 20 | sbie 1813 |
. . . . . 6
|
| 22 | 16, 21 | bitrdi 196 |
. . . . 5
|
| 23 | 15, 22 | anbi12d 473 |
. . . 4
|
| 24 | 13, 14, 23 | cbvopab1 4116 |
. . 3
|
| 25 | 8, 24 | eqtri 2225 |
. 2
|
| 26 | df-mpt 4106 |
. 2
| |
| 27 | df-mpt 4106 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-mpt 4106 |
| This theorem is referenced by: cbvmptv 4139 dffn5imf 5633 fvmpts 5656 fvmpt2 5662 mptfvex 5664 fmptcof 5746 fmptcos 5747 fliftfuns 5866 offval2 6173 qliftfuns 6705 cc2 7378 summodclem2a 11634 zsumdc 11637 fsum3cvg2 11647 cbvprod 11811 zproddc 11832 fprodseq 11836 pcmptdvds 12610 gsumfzconstf 13620 cnmpt1t 14699 fsumcncntop 14981 limcmpted 15077 dvmptfsum 15139 |
| Copyright terms: Public domain | W3C validator |