ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpt Unicode version

Theorem cbvmpt 3981
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
cbvmpt.1  |-  F/_ y B
cbvmpt.2  |-  F/_ x C
cbvmpt.3  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvmpt  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  C )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    B( x, y)    C( x, y)

Proof of Theorem cbvmpt
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1489 . . . 4  |-  F/ w
( x  e.  A  /\  z  =  B
)
2 nfv 1489 . . . . 5  |-  F/ x  w  e.  A
3 nfs1v 1888 . . . . 5  |-  F/ x [ w  /  x ] z  =  B
42, 3nfan 1525 . . . 4  |-  F/ x
( w  e.  A  /\  [ w  /  x ] z  =  B )
5 eleq1 2175 . . . . 5  |-  ( x  =  w  ->  (
x  e.  A  <->  w  e.  A ) )
6 sbequ12 1725 . . . . 5  |-  ( x  =  w  ->  (
z  =  B  <->  [ w  /  x ] z  =  B ) )
75, 6anbi12d 462 . . . 4  |-  ( x  =  w  ->  (
( x  e.  A  /\  z  =  B
)  <->  ( w  e.  A  /\  [ w  /  x ] z  =  B ) ) )
81, 4, 7cbvopab1 3959 . . 3  |-  { <. x ,  z >.  |  ( x  e.  A  /\  z  =  B ) }  =  { <. w ,  z >.  |  ( w  e.  A  /\  [ w  /  x ]
z  =  B ) }
9 nfv 1489 . . . . 5  |-  F/ y  w  e.  A
10 cbvmpt.1 . . . . . . 7  |-  F/_ y B
1110nfeq2 2265 . . . . . 6  |-  F/ y  z  =  B
1211nfsb 1895 . . . . 5  |-  F/ y [ w  /  x ] z  =  B
139, 12nfan 1525 . . . 4  |-  F/ y ( w  e.  A  /\  [ w  /  x ] z  =  B )
14 nfv 1489 . . . 4  |-  F/ w
( y  e.  A  /\  z  =  C
)
15 eleq1 2175 . . . . 5  |-  ( w  =  y  ->  (
w  e.  A  <->  y  e.  A ) )
16 sbequ 1792 . . . . . 6  |-  ( w  =  y  ->  ( [ w  /  x ] z  =  B  <->  [ y  /  x ] z  =  B ) )
17 cbvmpt.2 . . . . . . . 8  |-  F/_ x C
1817nfeq2 2265 . . . . . . 7  |-  F/ x  z  =  C
19 cbvmpt.3 . . . . . . . 8  |-  ( x  =  y  ->  B  =  C )
2019eqeq2d 2124 . . . . . . 7  |-  ( x  =  y  ->  (
z  =  B  <->  z  =  C ) )
2118, 20sbie 1745 . . . . . 6  |-  ( [ y  /  x ]
z  =  B  <->  z  =  C )
2216, 21syl6bb 195 . . . . 5  |-  ( w  =  y  ->  ( [ w  /  x ] z  =  B  <-> 
z  =  C ) )
2315, 22anbi12d 462 . . . 4  |-  ( w  =  y  ->  (
( w  e.  A  /\  [ w  /  x ] z  =  B )  <->  ( y  e.  A  /\  z  =  C ) ) )
2413, 14, 23cbvopab1 3959 . . 3  |-  { <. w ,  z >.  |  ( w  e.  A  /\  [ w  /  x ]
z  =  B ) }  =  { <. y ,  z >.  |  ( y  e.  A  /\  z  =  C ) }
258, 24eqtri 2133 . 2  |-  { <. x ,  z >.  |  ( x  e.  A  /\  z  =  B ) }  =  { <. y ,  z >.  |  ( y  e.  A  /\  z  =  C ) }
26 df-mpt 3949 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  z >.  |  ( x  e.  A  /\  z  =  B ) }
27 df-mpt 3949 . 2  |-  ( y  e.  A  |->  C )  =  { <. y ,  z >.  |  ( y  e.  A  /\  z  =  C ) }
2825, 26, 273eqtr4i 2143 1  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1312    e. wcel 1461   [wsb 1716   F/_wnfc 2240   {copab 3946    |-> cmpt 3947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-un 3039  df-sn 3497  df-pr 3498  df-op 3500  df-opab 3948  df-mpt 3949
This theorem is referenced by:  cbvmptv  3982  dffn5imf  5428  fvmpts  5451  fvmpt2  5456  mptfvex  5458  fmptcof  5539  fmptcos  5540  fliftfuns  5651  offval2  5949  qliftfuns  6465  summodclem2a  11036  zsumdc  11039  fsum3cvg2  11049  cnmpt1t  12290  fsumcncntop  12536  limcmpted  12582
  Copyright terms: Public domain W3C validator