Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvmpt | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
Ref | Expression |
---|---|
cbvmpt.1 | |
cbvmpt.2 | |
cbvmpt.3 |
Ref | Expression |
---|---|
cbvmpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . . 4 | |
2 | nfv 1516 | . . . . 5 | |
3 | nfs1v 1927 | . . . . 5 | |
4 | 2, 3 | nfan 1553 | . . . 4 |
5 | eleq1 2229 | . . . . 5 | |
6 | sbequ12 1759 | . . . . 5 | |
7 | 5, 6 | anbi12d 465 | . . . 4 |
8 | 1, 4, 7 | cbvopab1 4055 | . . 3 |
9 | nfv 1516 | . . . . 5 | |
10 | cbvmpt.1 | . . . . . . 7 | |
11 | 10 | nfeq2 2320 | . . . . . 6 |
12 | 11 | nfsb 1934 | . . . . 5 |
13 | 9, 12 | nfan 1553 | . . . 4 |
14 | nfv 1516 | . . . 4 | |
15 | eleq1 2229 | . . . . 5 | |
16 | sbequ 1828 | . . . . . 6 | |
17 | cbvmpt.2 | . . . . . . . 8 | |
18 | 17 | nfeq2 2320 | . . . . . . 7 |
19 | cbvmpt.3 | . . . . . . . 8 | |
20 | 19 | eqeq2d 2177 | . . . . . . 7 |
21 | 18, 20 | sbie 1779 | . . . . . 6 |
22 | 16, 21 | bitrdi 195 | . . . . 5 |
23 | 15, 22 | anbi12d 465 | . . . 4 |
24 | 13, 14, 23 | cbvopab1 4055 | . . 3 |
25 | 8, 24 | eqtri 2186 | . 2 |
26 | df-mpt 4045 | . 2 | |
27 | df-mpt 4045 | . 2 | |
28 | 25, 26, 27 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wsb 1750 wcel 2136 wnfc 2295 copab 4042 cmpt 4043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-mpt 4045 |
This theorem is referenced by: cbvmptv 4078 dffn5imf 5541 fvmpts 5564 fvmpt2 5569 mptfvex 5571 fmptcof 5652 fmptcos 5653 fliftfuns 5766 offval2 6065 qliftfuns 6585 cc2 7208 summodclem2a 11322 zsumdc 11325 fsum3cvg2 11335 cbvprod 11499 zproddc 11520 fprodseq 11524 pcmptdvds 12275 cnmpt1t 12925 fsumcncntop 13196 limcmpted 13272 |
Copyright terms: Public domain | W3C validator |