| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpt | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
| Ref | Expression |
|---|---|
| cbvmpt.1 |
|
| cbvmpt.2 |
|
| cbvmpt.3 |
|
| Ref | Expression |
|---|---|
| cbvmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 |
. . . 4
| |
| 2 | nfv 1550 |
. . . . 5
| |
| 3 | nfs1v 1966 |
. . . . 5
| |
| 4 | 2, 3 | nfan 1587 |
. . . 4
|
| 5 | eleq1 2267 |
. . . . 5
| |
| 6 | sbequ12 1793 |
. . . . 5
| |
| 7 | 5, 6 | anbi12d 473 |
. . . 4
|
| 8 | 1, 4, 7 | cbvopab1 4116 |
. . 3
|
| 9 | nfv 1550 |
. . . . 5
| |
| 10 | cbvmpt.1 |
. . . . . . 7
| |
| 11 | 10 | nfeq2 2359 |
. . . . . 6
|
| 12 | 11 | nfsb 1973 |
. . . . 5
|
| 13 | 9, 12 | nfan 1587 |
. . . 4
|
| 14 | nfv 1550 |
. . . 4
| |
| 15 | eleq1 2267 |
. . . . 5
| |
| 16 | sbequ 1862 |
. . . . . 6
| |
| 17 | cbvmpt.2 |
. . . . . . . 8
| |
| 18 | 17 | nfeq2 2359 |
. . . . . . 7
|
| 19 | cbvmpt.3 |
. . . . . . . 8
| |
| 20 | 19 | eqeq2d 2216 |
. . . . . . 7
|
| 21 | 18, 20 | sbie 1813 |
. . . . . 6
|
| 22 | 16, 21 | bitrdi 196 |
. . . . 5
|
| 23 | 15, 22 | anbi12d 473 |
. . . 4
|
| 24 | 13, 14, 23 | cbvopab1 4116 |
. . 3
|
| 25 | 8, 24 | eqtri 2225 |
. 2
|
| 26 | df-mpt 4106 |
. 2
| |
| 27 | df-mpt 4106 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-mpt 4106 |
| This theorem is referenced by: cbvmptv 4139 dffn5imf 5628 fvmpts 5651 fvmpt2 5657 mptfvex 5659 fmptcof 5741 fmptcos 5742 fliftfuns 5857 offval2 6164 qliftfuns 6696 cc2 7361 summodclem2a 11611 zsumdc 11614 fsum3cvg2 11624 cbvprod 11788 zproddc 11809 fprodseq 11813 pcmptdvds 12587 gsumfzconstf 13596 cnmpt1t 14675 fsumcncntop 14957 limcmpted 15053 dvmptfsum 15115 |
| Copyright terms: Public domain | W3C validator |