| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpt | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
| Ref | Expression |
|---|---|
| cbvmpt.1 |
|
| cbvmpt.2 |
|
| cbvmpt.3 |
|
| Ref | Expression |
|---|---|
| cbvmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. . . 4
| |
| 2 | nfv 1552 |
. . . . 5
| |
| 3 | nfs1v 1968 |
. . . . 5
| |
| 4 | 2, 3 | nfan 1589 |
. . . 4
|
| 5 | eleq1 2269 |
. . . . 5
| |
| 6 | sbequ12 1795 |
. . . . 5
| |
| 7 | 5, 6 | anbi12d 473 |
. . . 4
|
| 8 | 1, 4, 7 | cbvopab1 4125 |
. . 3
|
| 9 | nfv 1552 |
. . . . 5
| |
| 10 | cbvmpt.1 |
. . . . . . 7
| |
| 11 | 10 | nfeq2 2361 |
. . . . . 6
|
| 12 | 11 | nfsb 1975 |
. . . . 5
|
| 13 | 9, 12 | nfan 1589 |
. . . 4
|
| 14 | nfv 1552 |
. . . 4
| |
| 15 | eleq1 2269 |
. . . . 5
| |
| 16 | sbequ 1864 |
. . . . . 6
| |
| 17 | cbvmpt.2 |
. . . . . . . 8
| |
| 18 | 17 | nfeq2 2361 |
. . . . . . 7
|
| 19 | cbvmpt.3 |
. . . . . . . 8
| |
| 20 | 19 | eqeq2d 2218 |
. . . . . . 7
|
| 21 | 18, 20 | sbie 1815 |
. . . . . 6
|
| 22 | 16, 21 | bitrdi 196 |
. . . . 5
|
| 23 | 15, 22 | anbi12d 473 |
. . . 4
|
| 24 | 13, 14, 23 | cbvopab1 4125 |
. . 3
|
| 25 | 8, 24 | eqtri 2227 |
. 2
|
| 26 | df-mpt 4115 |
. 2
| |
| 27 | df-mpt 4115 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4114 df-mpt 4115 |
| This theorem is referenced by: cbvmptv 4148 dffn5imf 5647 fvmpts 5670 fvmpt2 5676 mptfvex 5678 fmptcof 5760 fmptcos 5761 fliftfuns 5880 offval2 6187 qliftfuns 6719 cc2 7399 summodclem2a 11767 zsumdc 11770 fsum3cvg2 11780 cbvprod 11944 zproddc 11965 fprodseq 11969 pcmptdvds 12743 gsumfzconstf 13753 cnmpt1t 14832 fsumcncntop 15114 limcmpted 15210 dvmptfsum 15272 |
| Copyright terms: Public domain | W3C validator |