| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpt | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
| Ref | Expression |
|---|---|
| cbvmpt.1 |
|
| cbvmpt.2 |
|
| cbvmpt.3 |
|
| Ref | Expression |
|---|---|
| cbvmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. . . 4
| |
| 2 | nfv 1574 |
. . . . 5
| |
| 3 | nfs1v 1990 |
. . . . 5
| |
| 4 | 2, 3 | nfan 1611 |
. . . 4
|
| 5 | eleq1 2292 |
. . . . 5
| |
| 6 | sbequ12 1817 |
. . . . 5
| |
| 7 | 5, 6 | anbi12d 473 |
. . . 4
|
| 8 | 1, 4, 7 | cbvopab1 4156 |
. . 3
|
| 9 | nfv 1574 |
. . . . 5
| |
| 10 | cbvmpt.1 |
. . . . . . 7
| |
| 11 | 10 | nfeq2 2384 |
. . . . . 6
|
| 12 | 11 | nfsb 1997 |
. . . . 5
|
| 13 | 9, 12 | nfan 1611 |
. . . 4
|
| 14 | nfv 1574 |
. . . 4
| |
| 15 | eleq1 2292 |
. . . . 5
| |
| 16 | sbequ 1886 |
. . . . . 6
| |
| 17 | cbvmpt.2 |
. . . . . . . 8
| |
| 18 | 17 | nfeq2 2384 |
. . . . . . 7
|
| 19 | cbvmpt.3 |
. . . . . . . 8
| |
| 20 | 19 | eqeq2d 2241 |
. . . . . . 7
|
| 21 | 18, 20 | sbie 1837 |
. . . . . 6
|
| 22 | 16, 21 | bitrdi 196 |
. . . . 5
|
| 23 | 15, 22 | anbi12d 473 |
. . . 4
|
| 24 | 13, 14, 23 | cbvopab1 4156 |
. . 3
|
| 25 | 8, 24 | eqtri 2250 |
. 2
|
| 26 | df-mpt 4146 |
. 2
| |
| 27 | df-mpt 4146 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: cbvmptv 4179 dffn5imf 5688 fvmpts 5711 fvmpt2 5717 mptfvex 5719 fmptcof 5801 fmptcos 5802 fliftfuns 5921 offval2 6232 qliftfuns 6764 cc2 7449 summodclem2a 11887 zsumdc 11890 fsum3cvg2 11900 cbvprod 12064 zproddc 12085 fprodseq 12089 pcmptdvds 12863 gsumfzconstf 13874 cnmpt1t 14953 fsumcncntop 15235 limcmpted 15331 dvmptfsum 15393 |
| Copyright terms: Public domain | W3C validator |