ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ishmeo Unicode version

Theorem ishmeo 12954
Description: The predicate F is a homeomorphism between topology  J and topology  K. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )

Proof of Theorem ishmeo
Dummy variables  f  j  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmeo 12951 . . 3  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
21elmpocl 6036 . 2  |-  ( F  e.  ( J Homeo K )  ->  ( J  e.  Top  /\  K  e. 
Top ) )
3 df-cn 12838 . . . 4  |-  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } )
43elmpocl 6036 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  Top  /\  K  e.  Top ) )
54adantr 274 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  `' F  e.  ( K  Cn  J ) )  ->  ( J  e. 
Top  /\  K  e.  Top ) )
6 hmeofvalg 12953 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J Homeo K )  =  { f  e.  ( J  Cn  K
)  |  `' f  e.  ( K  Cn  J ) } )
76eleq2d 2236 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J Homeo K )  <->  F  e.  { f  e.  ( J  Cn  K )  |  `' f  e.  ( K  Cn  J ) } ) )
8 cnveq 4778 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
98eleq1d 2235 . . . 4  |-  ( f  =  F  ->  ( `' f  e.  ( K  Cn  J )  <->  `' F  e.  ( K  Cn  J
) ) )
109elrab 2882 . . 3  |-  ( F  e.  { f  e.  ( J  Cn  K
)  |  `' f  e.  ( K  Cn  J ) }  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
117, 10bitrdi 195 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) ) )
122, 5, 11pm5.21nii 694 1  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   {crab 2448   U.cuni 3789   `'ccnv 4603   "cima 4607  (class class class)co 5842    ^m cmap 6614   Topctop 12645    Cn ccn 12835   Homeochmeo 12950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-top 12646  df-topon 12659  df-cn 12838  df-hmeo 12951
This theorem is referenced by:  hmeocn  12955  hmeocnvcn  12956  hmeocnv  12957  hmeores  12965  hmeoco  12966  idhmeo  12967  txhmeo  12969  txswaphmeo  12971  cnrehmeocntop  13243
  Copyright terms: Public domain W3C validator