ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ishmeo Unicode version

Theorem ishmeo 14100
Description: The predicate F is a homeomorphism between topology  J and topology  K. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )

Proof of Theorem ishmeo
Dummy variables  f  j  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmeo 14097 . . 3  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
21elmpocl 6083 . 2  |-  ( F  e.  ( J Homeo K )  ->  ( J  e.  Top  /\  K  e. 
Top ) )
3 df-cn 13984 . . . 4  |-  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } )
43elmpocl 6083 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  Top  /\  K  e.  Top ) )
54adantr 276 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  `' F  e.  ( K  Cn  J ) )  ->  ( J  e. 
Top  /\  K  e.  Top ) )
6 hmeofvalg 14099 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J Homeo K )  =  { f  e.  ( J  Cn  K
)  |  `' f  e.  ( K  Cn  J ) } )
76eleq2d 2257 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J Homeo K )  <->  F  e.  { f  e.  ( J  Cn  K )  |  `' f  e.  ( K  Cn  J ) } ) )
8 cnveq 4813 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
98eleq1d 2256 . . . 4  |-  ( f  =  F  ->  ( `' f  e.  ( K  Cn  J )  <->  `' F  e.  ( K  Cn  J
) ) )
109elrab 2905 . . 3  |-  ( F  e.  { f  e.  ( J  Cn  K
)  |  `' f  e.  ( K  Cn  J ) }  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
117, 10bitrdi 196 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) ) )
122, 5, 11pm5.21nii 705 1  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   A.wral 2465   {crab 2469   U.cuni 3821   `'ccnv 4637   "cima 4641  (class class class)co 5888    ^m cmap 6662   Topctop 13793    Cn ccn 13981   Homeochmeo 14096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-map 6664  df-top 13794  df-topon 13807  df-cn 13984  df-hmeo 14097
This theorem is referenced by:  hmeocn  14101  hmeocnvcn  14102  hmeocnv  14103  hmeores  14111  hmeoco  14112  idhmeo  14113  txhmeo  14115  txswaphmeo  14117  cnrehmeocntop  14389
  Copyright terms: Public domain W3C validator