Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ishmeo | Unicode version |
Description: The predicate F is a homeomorphism between topology and topology . Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
ishmeo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmeo 12951 | . . 3 | |
2 | 1 | elmpocl 6036 | . 2 |
3 | df-cn 12838 | . . . 4 | |
4 | 3 | elmpocl 6036 | . . 3 |
5 | 4 | adantr 274 | . 2 |
6 | hmeofvalg 12953 | . . . 4 | |
7 | 6 | eleq2d 2236 | . . 3 |
8 | cnveq 4778 | . . . . 5 | |
9 | 8 | eleq1d 2235 | . . . 4 |
10 | 9 | elrab 2882 | . . 3 |
11 | 7, 10 | bitrdi 195 | . 2 |
12 | 2, 5, 11 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 crab 2448 cuni 3789 ccnv 4603 cima 4607 (class class class)co 5842 cmap 6614 ctop 12645 ccn 12835 chmeo 12950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-top 12646 df-topon 12659 df-cn 12838 df-hmeo 12951 |
This theorem is referenced by: hmeocn 12955 hmeocnvcn 12956 hmeocnv 12957 hmeores 12965 hmeoco 12966 idhmeo 12967 txhmeo 12969 txswaphmeo 12971 cnrehmeocntop 13243 |
Copyright terms: Public domain | W3C validator |