ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ishmeo Unicode version

Theorem ishmeo 14540
Description: The predicate F is a homeomorphism between topology  J and topology  K. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )

Proof of Theorem ishmeo
Dummy variables  f  j  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmeo 14537 . . 3  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
21elmpocl 6118 . 2  |-  ( F  e.  ( J Homeo K )  ->  ( J  e.  Top  /\  K  e. 
Top ) )
3 df-cn 14424 . . . 4  |-  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } )
43elmpocl 6118 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  Top  /\  K  e.  Top ) )
54adantr 276 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  `' F  e.  ( K  Cn  J ) )  ->  ( J  e. 
Top  /\  K  e.  Top ) )
6 hmeofvalg 14539 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J Homeo K )  =  { f  e.  ( J  Cn  K
)  |  `' f  e.  ( K  Cn  J ) } )
76eleq2d 2266 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J Homeo K )  <->  F  e.  { f  e.  ( J  Cn  K )  |  `' f  e.  ( K  Cn  J ) } ) )
8 cnveq 4840 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
98eleq1d 2265 . . . 4  |-  ( f  =  F  ->  ( `' f  e.  ( K  Cn  J )  <->  `' F  e.  ( K  Cn  J
) ) )
109elrab 2920 . . 3  |-  ( F  e.  { f  e.  ( J  Cn  K
)  |  `' f  e.  ( K  Cn  J ) }  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
117, 10bitrdi 196 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) ) )
122, 5, 11pm5.21nii 705 1  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   U.cuni 3839   `'ccnv 4662   "cima 4666  (class class class)co 5922    ^m cmap 6707   Topctop 14233    Cn ccn 14421   Homeochmeo 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-top 14234  df-topon 14247  df-cn 14424  df-hmeo 14537
This theorem is referenced by:  hmeocn  14541  hmeocnvcn  14542  hmeocnv  14543  hmeores  14551  hmeoco  14552  idhmeo  14553  txhmeo  14555  txswaphmeo  14557  cnrehmeocntop  14846
  Copyright terms: Public domain W3C validator