ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ishmeo Unicode version

Theorem ishmeo 13843
Description: The predicate F is a homeomorphism between topology  J and topology  K. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )

Proof of Theorem ishmeo
Dummy variables  f  j  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmeo 13840 . . 3  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
21elmpocl 6071 . 2  |-  ( F  e.  ( J Homeo K )  ->  ( J  e.  Top  /\  K  e. 
Top ) )
3 df-cn 13727 . . . 4  |-  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } )
43elmpocl 6071 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  Top  /\  K  e.  Top ) )
54adantr 276 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  `' F  e.  ( K  Cn  J ) )  ->  ( J  e. 
Top  /\  K  e.  Top ) )
6 hmeofvalg 13842 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J Homeo K )  =  { f  e.  ( J  Cn  K
)  |  `' f  e.  ( K  Cn  J ) } )
76eleq2d 2247 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J Homeo K )  <->  F  e.  { f  e.  ( J  Cn  K )  |  `' f  e.  ( K  Cn  J ) } ) )
8 cnveq 4803 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
98eleq1d 2246 . . . 4  |-  ( f  =  F  ->  ( `' f  e.  ( K  Cn  J )  <->  `' F  e.  ( K  Cn  J
) ) )
109elrab 2895 . . 3  |-  ( F  e.  { f  e.  ( J  Cn  K
)  |  `' f  e.  ( K  Cn  J ) }  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
117, 10bitrdi 196 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) ) )
122, 5, 11pm5.21nii 704 1  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459   U.cuni 3811   `'ccnv 4627   "cima 4631  (class class class)co 5877    ^m cmap 6650   Topctop 13536    Cn ccn 13724   Homeochmeo 13839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13537  df-topon 13550  df-cn 13727  df-hmeo 13840
This theorem is referenced by:  hmeocn  13844  hmeocnvcn  13845  hmeocnv  13846  hmeores  13854  hmeoco  13855  idhmeo  13856  txhmeo  13858  txswaphmeo  13860  cnrehmeocntop  14132
  Copyright terms: Public domain W3C validator