Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvsn0 | GIF version |
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
cnvsn0 | ⊢ ◡{∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 4796 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
2 | dmsn0 5071 | . . 3 ⊢ dom {∅} = ∅ | |
3 | 1, 2 | eqtr3i 2188 | . 2 ⊢ ran ◡{∅} = ∅ |
4 | relcnv 4982 | . . 3 ⊢ Rel ◡{∅} | |
5 | relrn0 4866 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
7 | 3, 6 | mpbir 145 | 1 ⊢ ◡{∅} = ∅ |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∅c0 3409 {csn 3576 ◡ccnv 4603 dom cdm 4604 ran crn 4605 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: brtpos0 6220 tpostpos 6232 |
Copyright terms: Public domain | W3C validator |