ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsn0 GIF version

Theorem cnvsn0 5139
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
cnvsn0 {∅} = ∅

Proof of Theorem cnvsn0
StepHypRef Expression
1 dfdm4 4859 . . 3 dom {∅} = ran {∅}
2 dmsn0 5138 . . 3 dom {∅} = ∅
31, 2eqtr3i 2219 . 2 ran {∅} = ∅
4 relcnv 5048 . . 3 Rel {∅}
5 relrn0 4929 . . 3 (Rel {∅} → ({∅} = ∅ ↔ ran {∅} = ∅))
64, 5ax-mp 5 . 2 ({∅} = ∅ ↔ ran {∅} = ∅)
73, 6mpbir 146 1 {∅} = ∅
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  c0 3451  {csn 3623  ccnv 4663  dom cdm 4664  ran crn 4665  Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by:  brtpos0  6319  tpostpos  6331
  Copyright terms: Public domain W3C validator