| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvsn0 | GIF version | ||
| Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnvsn0 | ⊢ ◡{∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 4870 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
| 2 | dmsn0 5150 | . . 3 ⊢ dom {∅} = ∅ | |
| 3 | 1, 2 | eqtr3i 2228 | . 2 ⊢ ran ◡{∅} = ∅ |
| 4 | relcnv 5060 | . . 3 ⊢ Rel ◡{∅} | |
| 5 | relrn0 4940 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
| 7 | 3, 6 | mpbir 146 | 1 ⊢ ◡{∅} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∅c0 3460 {csn 3633 ◡ccnv 4674 dom cdm 4675 ran crn 4676 Rel wrel 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-dm 4685 df-rn 4686 |
| This theorem is referenced by: brtpos0 6338 tpostpos 6350 |
| Copyright terms: Public domain | W3C validator |