| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvsn0 | GIF version | ||
| Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnvsn0 | ⊢ ◡{∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 4914 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
| 2 | dmsn0 5195 | . . 3 ⊢ dom {∅} = ∅ | |
| 3 | 1, 2 | eqtr3i 2252 | . 2 ⊢ ran ◡{∅} = ∅ |
| 4 | relcnv 5105 | . . 3 ⊢ Rel ◡{∅} | |
| 5 | relrn0 4985 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
| 7 | 3, 6 | mpbir 146 | 1 ⊢ ◡{∅} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∅c0 3491 {csn 3666 ◡ccnv 4717 dom cdm 4718 ran crn 4719 Rel wrel 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: brtpos0 6396 tpostpos 6408 |
| Copyright terms: Public domain | W3C validator |