| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvsn0 | GIF version | ||
| Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnvsn0 | ⊢ ◡{∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 4858 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
| 2 | dmsn0 5137 | . . 3 ⊢ dom {∅} = ∅ | |
| 3 | 1, 2 | eqtr3i 2219 | . 2 ⊢ ran ◡{∅} = ∅ |
| 4 | relcnv 5047 | . . 3 ⊢ Rel ◡{∅} | |
| 5 | relrn0 4928 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
| 7 | 3, 6 | mpbir 146 | 1 ⊢ ◡{∅} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∅c0 3450 {csn 3622 ◡ccnv 4662 dom cdm 4663 ran crn 4664 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 |
| This theorem is referenced by: brtpos0 6310 tpostpos 6322 |
| Copyright terms: Public domain | W3C validator |