Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvsn0 | GIF version |
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
cnvsn0 | ⊢ ◡{∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 4803 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
2 | dmsn0 5078 | . . 3 ⊢ dom {∅} = ∅ | |
3 | 1, 2 | eqtr3i 2193 | . 2 ⊢ ran ◡{∅} = ∅ |
4 | relcnv 4989 | . . 3 ⊢ Rel ◡{∅} | |
5 | relrn0 4873 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
7 | 3, 6 | mpbir 145 | 1 ⊢ ◡{∅} = ∅ |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∅c0 3414 {csn 3583 ◡ccnv 4610 dom cdm 4611 ran crn 4612 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: brtpos0 6231 tpostpos 6243 |
Copyright terms: Public domain | W3C validator |