ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coires1 Unicode version

Theorem coires1 5126
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1  |-  ( A  o.  (  _I  |`  B ) )  =  ( A  |`  B )

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 5119 . . . . 5  |-  ( `' `' A  o.  _I  )  =  ( A  o.  _I  )
2 relcnv 4987 . . . . . 6  |-  Rel  `' `' A
3 coi1 5124 . . . . . 6  |-  ( Rel  `' `' A  ->  ( `' `' A  o.  _I  )  =  `' `' A )
42, 3ax-mp 5 . . . . 5  |-  ( `' `' A  o.  _I  )  =  `' `' A
51, 4eqtr3i 2193 . . . 4  |-  ( A  o.  _I  )  =  `' `' A
65reseq1i 4885 . . 3  |-  ( ( A  o.  _I  )  |`  B )  =  ( `' `' A  |`  B )
7 resco 5113 . . 3  |-  ( ( A  o.  _I  )  |`  B )  =  ( A  o.  (  _I  |`  B ) )
86, 7eqtr3i 2193 . 2  |-  ( `' `' A  |`  B )  =  ( A  o.  (  _I  |`  B ) )
9 rescnvcnv 5071 . 2  |-  ( `' `' A  |`  B )  =  ( A  |`  B )
108, 9eqtr3i 2193 1  |-  ( A  o.  (  _I  |`  B ) )  =  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1348    _I cid 4271   `'ccnv 4608    |` cres 4611    o. ccom 4613   Rel wrel 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621
This theorem is referenced by:  funcoeqres  5471
  Copyright terms: Public domain W3C validator