ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coires1 Unicode version

Theorem coires1 5148
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1  |-  ( A  o.  (  _I  |`  B ) )  =  ( A  |`  B )

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 5141 . . . . 5  |-  ( `' `' A  o.  _I  )  =  ( A  o.  _I  )
2 relcnv 5008 . . . . . 6  |-  Rel  `' `' A
3 coi1 5146 . . . . . 6  |-  ( Rel  `' `' A  ->  ( `' `' A  o.  _I  )  =  `' `' A )
42, 3ax-mp 5 . . . . 5  |-  ( `' `' A  o.  _I  )  =  `' `' A
51, 4eqtr3i 2200 . . . 4  |-  ( A  o.  _I  )  =  `' `' A
65reseq1i 4905 . . 3  |-  ( ( A  o.  _I  )  |`  B )  =  ( `' `' A  |`  B )
7 resco 5135 . . 3  |-  ( ( A  o.  _I  )  |`  B )  =  ( A  o.  (  _I  |`  B ) )
86, 7eqtr3i 2200 . 2  |-  ( `' `' A  |`  B )  =  ( A  o.  (  _I  |`  B ) )
9 rescnvcnv 5093 . 2  |-  ( `' `' A  |`  B )  =  ( A  |`  B )
108, 9eqtr3i 2200 1  |-  ( A  o.  (  _I  |`  B ) )  =  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    _I cid 4290   `'ccnv 4627    |` cres 4630    o. ccom 4632   Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640
This theorem is referenced by:  funcoeqres  5494
  Copyright terms: Public domain W3C validator