| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidifsnid | Unicode version | ||
| Description: If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3778 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.) |
| Ref | Expression |
|---|---|
| fidifsnid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidceq 6965 |
. . . 4
| |
| 2 | 1 | 3expb 1206 |
. . 3
|
| 3 | 2 | ralrimivva 2587 |
. 2
|
| 4 | dcdifsnid 6589 |
. 2
| |
| 5 | 3, 4 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-en 6827 df-fin 6829 |
| This theorem is referenced by: findcard2 6985 findcard2s 6986 xpfi 7028 fisseneq 7030 zfz1isolem1 10983 |
| Copyright terms: Public domain | W3C validator |