Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fidifsnid | Unicode version |
Description: If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3719 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.) |
Ref | Expression |
---|---|
fidifsnid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidceq 6835 | . . . 4 DECID | |
2 | 1 | 3expb 1194 | . . 3 DECID |
3 | 2 | ralrimivva 2548 | . 2 DECID |
4 | dcdifsnid 6472 | . 2 DECID | |
5 | 3, 4 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 cdif 3113 cun 3114 csn 3576 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-en 6707 df-fin 6709 |
This theorem is referenced by: findcard2 6855 findcard2s 6856 xpfi 6895 fisseneq 6897 zfz1isolem1 10753 |
Copyright terms: Public domain | W3C validator |