ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidifsnid Unicode version

Theorem fidifsnid 6927
Description: If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3764 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.)
Assertion
Ref Expression
fidifsnid  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )

Proof of Theorem fidifsnid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fidceq 6925 . . . 4  |-  ( ( A  e.  Fin  /\  x  e.  A  /\  y  e.  A )  -> DECID  x  =  y )
213expb 1206 . . 3  |-  ( ( A  e.  Fin  /\  ( x  e.  A  /\  y  e.  A
) )  -> DECID  x  =  y
)
32ralrimivva 2576 . 2  |-  ( A  e.  Fin  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4 dcdifsnid 6557 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
53, 4sylan 283 1  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472    \ cdif 3150    u. cun 3151   {csn 3618   Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-en 6795  df-fin 6797
This theorem is referenced by:  findcard2  6945  findcard2s  6946  xpfi  6986  fisseneq  6988  zfz1isolem1  10911
  Copyright terms: Public domain W3C validator