| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidifsnid | Unicode version | ||
| Description: If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3785 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.) |
| Ref | Expression |
|---|---|
| fidifsnid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidceq 6987 |
. . . 4
| |
| 2 | 1 | 3expb 1207 |
. . 3
|
| 3 | 2 | ralrimivva 2589 |
. 2
|
| 4 | dcdifsnid 6608 |
. 2
| |
| 5 | 3, 4 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-en 6846 df-fin 6848 |
| This theorem is referenced by: findcard2 7007 findcard2s 7008 xpfi 7050 fisseneq 7052 zfz1isolem1 11017 |
| Copyright terms: Public domain | W3C validator |