![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifd | Unicode version |
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3163. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eldifd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eldifd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eldifd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eldif 3163 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | sylanbrc 417 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 |
This theorem is referenced by: exmidundif 4236 exmidundifim 4237 frirrg 4382 dcdifsnid 6559 phpelm 6924 findcard2d 6949 findcard2sd 6950 diffifi 6952 unsnfidcex 6978 unsnfidcel 6979 undifdcss 6981 difinfsnlem 7160 difinfsn 7161 hashunlem 10878 seq3coll 10916 fsum3cvg 11524 isumss 11537 fisumss 11538 fproddccvg 11718 fprodssdc 11736 sqrt2irr0 12305 nnoddn2prmb 12403 logbgcd1irr 15140 2lgslem2 15249 |
Copyright terms: Public domain | W3C validator |