| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifd | Unicode version | ||
| Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3175. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifd.1 |
|
| eldifd.2 |
|
| Ref | Expression |
|---|---|
| eldifd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifd.1 |
. 2
| |
| 2 | eldifd.2 |
. 2
| |
| 3 | eldif 3175 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 |
| This theorem is referenced by: exmidundif 4251 exmidundifim 4252 frirrg 4398 dcdifsnid 6592 phpelm 6965 findcard2d 6990 findcard2sd 6991 diffifi 6993 unsnfidcex 7019 unsnfidcel 7020 undifdcss 7022 difinfsnlem 7203 difinfsn 7204 hashunlem 10951 seq3coll 10989 fsum3cvg 11722 isumss 11735 fisumss 11736 fproddccvg 11916 fprodssdc 11934 sqrt2irr0 12519 nnoddn2prmb 12618 logbgcd1irr 15472 2lgslem2 15602 |
| Copyright terms: Public domain | W3C validator |