| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifd | Unicode version | ||
| Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3206. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifd.1 |
|
| eldifd.2 |
|
| Ref | Expression |
|---|---|
| eldifd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifd.1 |
. 2
| |
| 2 | eldifd.2 |
. 2
| |
| 3 | eldif 3206 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 |
| This theorem is referenced by: exmidundif 4290 exmidundifim 4291 frirrg 4441 dcdifsnid 6650 phpelm 7028 findcard2d 7053 findcard2sd 7054 diffifi 7056 unsnfidcex 7082 unsnfidcel 7083 undifdcss 7085 difinfsnlem 7266 difinfsn 7267 hashunlem 11026 seq3coll 11064 fsum3cvg 11889 isumss 11902 fisumss 11903 fproddccvg 12083 fprodssdc 12101 sqrt2irr0 12686 nnoddn2prmb 12785 bassetsnn 13089 logbgcd1irr 15641 2lgslem2 15771 |
| Copyright terms: Public domain | W3C validator |