Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifd Unicode version

Theorem eldifd 3076
 Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3075. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
eldifd.1
eldifd.2
Assertion
Ref Expression
eldifd

Proof of Theorem eldifd
StepHypRef Expression
1 eldifd.1 . 2
2 eldifd.2 . 2
3 eldif 3075 . 2
41, 2, 3sylanbrc 413 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wcel 1480   cdif 3063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-dif 3068 This theorem is referenced by:  exmidundif  4124  exmidundifim  4125  frirrg  4267  dcdifsnid  6393  phpelm  6753  findcard2d  6778  findcard2sd  6779  diffifi  6781  unsnfidcex  6801  unsnfidcel  6802  undifdcss  6804  difinfsnlem  6977  difinfsn  6978  hashunlem  10543  seq3coll  10578  fsum3cvg  11139  isumss  11153  fisumss  11154  fproddccvg  11334  sqrt2irr0  11831
 Copyright terms: Public domain W3C validator