Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifd | Unicode version |
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3124. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifd.1 | |
eldifd.2 |
Ref | Expression |
---|---|
eldifd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifd.1 | . 2 | |
2 | eldifd.2 | . 2 | |
3 | eldif 3124 | . 2 | |
4 | 1, 2, 3 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2136 cdif 3112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-dif 3117 |
This theorem is referenced by: exmidundif 4184 exmidundifim 4185 frirrg 4327 dcdifsnid 6468 phpelm 6828 findcard2d 6853 findcard2sd 6854 diffifi 6856 unsnfidcex 6881 unsnfidcel 6882 undifdcss 6884 difinfsnlem 7060 difinfsn 7061 hashunlem 10713 seq3coll 10751 fsum3cvg 11315 isumss 11328 fisumss 11329 fproddccvg 11509 fprodssdc 11527 sqrt2irr0 12092 nnoddn2prmb 12190 logbgcd1irr 13485 |
Copyright terms: Public domain | W3C validator |