ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifd Unicode version

Theorem eldifd 3139
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3138. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
eldifd.1  |-  ( ph  ->  A  e.  B )
eldifd.2  |-  ( ph  ->  -.  A  e.  C
)
Assertion
Ref Expression
eldifd  |-  ( ph  ->  A  e.  ( B 
\  C ) )

Proof of Theorem eldifd
StepHypRef Expression
1 eldifd.1 . 2  |-  ( ph  ->  A  e.  B )
2 eldifd.2 . 2  |-  ( ph  ->  -.  A  e.  C
)
3 eldif 3138 . 2  |-  ( A  e.  ( B  \  C )  <->  ( A  e.  B  /\  -.  A  e.  C ) )
41, 2, 3sylanbrc 417 1  |-  ( ph  ->  A  e.  ( B 
\  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2148    \ cdif 3126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-dif 3131
This theorem is referenced by:  exmidundif  4206  exmidundifim  4207  frirrg  4350  dcdifsnid  6504  phpelm  6865  findcard2d  6890  findcard2sd  6891  diffifi  6893  unsnfidcex  6918  unsnfidcel  6919  undifdcss  6921  difinfsnlem  7097  difinfsn  7098  hashunlem  10783  seq3coll  10821  fsum3cvg  11385  isumss  11398  fisumss  11399  fproddccvg  11579  fprodssdc  11597  sqrt2irr0  12163  nnoddn2prmb  12261  logbgcd1irr  14321
  Copyright terms: Public domain W3C validator