![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifd | Unicode version |
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3162. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eldifd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eldifd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eldifd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eldif 3162 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | sylanbrc 417 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 |
This theorem is referenced by: exmidundif 4235 exmidundifim 4236 frirrg 4381 dcdifsnid 6557 phpelm 6922 findcard2d 6947 findcard2sd 6948 diffifi 6950 unsnfidcex 6976 unsnfidcel 6977 undifdcss 6979 difinfsnlem 7158 difinfsn 7159 hashunlem 10875 seq3coll 10913 fsum3cvg 11521 isumss 11534 fisumss 11535 fproddccvg 11715 fprodssdc 11733 sqrt2irr0 12302 nnoddn2prmb 12400 logbgcd1irr 15099 |
Copyright terms: Public domain | W3C validator |