![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifd | Unicode version |
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3140. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eldifd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eldifd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eldifd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eldif 3140 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | sylanbrc 417 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 |
This theorem is referenced by: exmidundif 4208 exmidundifim 4209 frirrg 4352 dcdifsnid 6507 phpelm 6868 findcard2d 6893 findcard2sd 6894 diffifi 6896 unsnfidcex 6921 unsnfidcel 6922 undifdcss 6924 difinfsnlem 7100 difinfsn 7101 hashunlem 10786 seq3coll 10824 fsum3cvg 11388 isumss 11401 fisumss 11402 fproddccvg 11582 fprodssdc 11600 sqrt2irr0 12166 nnoddn2prmb 12264 logbgcd1irr 14424 |
Copyright terms: Public domain | W3C validator |