![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmiun | GIF version |
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dmiun | ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 2664 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) | |
2 | vex 2644 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | eldm2 4675 | . . . . 5 ⊢ (𝑦 ∈ dom 𝐵 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐵) |
4 | 3 | rexbii 2401 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐵) |
5 | eliun 3764 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) | |
6 | 5 | exbii 1552 | . . . 4 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) |
7 | 1, 4, 6 | 3bitr4ri 212 | . . 3 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵) |
8 | 2 | eldm2 4675 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | eliun 3764 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵) | |
10 | 7, 8, 9 | 3bitr4i 211 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵) |
11 | 10 | eqriv 2097 | 1 ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 ∃wex 1436 ∈ wcel 1448 ∃wrex 2376 〈cop 3477 ∪ ciun 3760 dom cdm 4477 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-sn 3480 df-pr 3481 df-op 3483 df-iun 3762 df-br 3876 df-dm 4487 |
This theorem is referenced by: ennnfonelemdm 11725 |
Copyright terms: Public domain | W3C validator |