Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmiun | GIF version |
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dmiun | ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 2753 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) | |
2 | vex 2733 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | eldm2 4809 | . . . . 5 ⊢ (𝑦 ∈ dom 𝐵 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐵) |
4 | 3 | rexbii 2477 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐵) |
5 | eliun 3877 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) | |
6 | 5 | exbii 1598 | . . . 4 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) |
7 | 1, 4, 6 | 3bitr4ri 212 | . . 3 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵) |
8 | 2 | eldm2 4809 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | eliun 3877 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵) | |
10 | 7, 8, 9 | 3bitr4i 211 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵) |
11 | 10 | eqriv 2167 | 1 ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 〈cop 3586 ∪ ciun 3873 dom cdm 4611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-iun 3875 df-br 3990 df-dm 4621 |
This theorem is referenced by: ennnfonelemdm 12375 |
Copyright terms: Public domain | W3C validator |