ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmuni Unicode version

Theorem dmuni 4886
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
Assertion
Ref Expression
dmuni  |-  dom  U. A  =  U_ x  e.  A  dom  x
Distinct variable group:    x, A

Proof of Theorem dmuni
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 1686 . . . . 5  |-  ( E. z E. x (
<. y ,  z >.  e.  x  /\  x  e.  A )  <->  E. x E. z ( <. y ,  z >.  e.  x  /\  x  e.  A
) )
2 ancom 266 . . . . . . 7  |-  ( ( E. z <. y ,  z >.  e.  x  /\  x  e.  A
)  <->  ( x  e.  A  /\  E. z <. y ,  z >.  e.  x ) )
3 19.41v 1925 . . . . . . 7  |-  ( E. z ( <. y ,  z >.  e.  x  /\  x  e.  A
)  <->  ( E. z <. y ,  z >.  e.  x  /\  x  e.  A ) )
4 vex 2774 . . . . . . . . 9  |-  y  e. 
_V
54eldm2 4874 . . . . . . . 8  |-  ( y  e.  dom  x  <->  E. z <. y ,  z >.  e.  x )
65anbi2i 457 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  dom  x )  <-> 
( x  e.  A  /\  E. z <. y ,  z >.  e.  x
) )
72, 3, 63bitr4i 212 . . . . . 6  |-  ( E. z ( <. y ,  z >.  e.  x  /\  x  e.  A
)  <->  ( x  e.  A  /\  y  e. 
dom  x ) )
87exbii 1627 . . . . 5  |-  ( E. x E. z (
<. y ,  z >.  e.  x  /\  x  e.  A )  <->  E. x
( x  e.  A  /\  y  e.  dom  x ) )
91, 8bitri 184 . . . 4  |-  ( E. z E. x (
<. y ,  z >.  e.  x  /\  x  e.  A )  <->  E. x
( x  e.  A  /\  y  e.  dom  x ) )
10 eluni 3852 . . . . 5  |-  ( <.
y ,  z >.  e.  U. A  <->  E. x
( <. y ,  z
>.  e.  x  /\  x  e.  A ) )
1110exbii 1627 . . . 4  |-  ( E. z <. y ,  z
>.  e.  U. A  <->  E. z E. x ( <. y ,  z >.  e.  x  /\  x  e.  A
) )
12 df-rex 2489 . . . 4  |-  ( E. x  e.  A  y  e.  dom  x  <->  E. x
( x  e.  A  /\  y  e.  dom  x ) )
139, 11, 123bitr4i 212 . . 3  |-  ( E. z <. y ,  z
>.  e.  U. A  <->  E. x  e.  A  y  e.  dom  x )
144eldm2 4874 . . 3  |-  ( y  e.  dom  U. A  <->  E. z <. y ,  z
>.  e.  U. A )
15 eliun 3930 . . 3  |-  ( y  e.  U_ x  e.  A  dom  x  <->  E. x  e.  A  y  e.  dom  x )
1613, 14, 153bitr4i 212 . 2  |-  ( y  e.  dom  U. A  <->  y  e.  U_ x  e.  A  dom  x )
1716eqriv 2201 1  |-  dom  U. A  =  U_ x  e.  A  dom  x
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   E.wrex 2484   <.cop 3635   U.cuni 3849   U_ciun 3926   dom cdm 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-dm 4683
This theorem is referenced by:  tfrlem8  6394  tfrlemi14d  6409  tfr1onlemres  6425  tfrcllemres  6438
  Copyright terms: Public domain W3C validator