ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecidg GIF version

Theorem ecidg 6486
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.)
Assertion
Ref Expression
ecidg (𝐴𝑉 → [𝐴] E = 𝐴)

Proof of Theorem ecidg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2684 . . . 4 𝑦 ∈ V
2 elecg 6460 . . . 4 ((𝑦 ∈ V ∧ 𝐴𝑉) → (𝑦 ∈ [𝐴] E ↔ 𝐴 E 𝑦))
31, 2mpan 420 . . 3 (𝐴𝑉 → (𝑦 ∈ [𝐴] E ↔ 𝐴 E 𝑦))
4 brcnvg 4715 . . . 4 ((𝐴𝑉𝑦 ∈ V) → (𝐴 E 𝑦𝑦 E 𝐴))
51, 4mpan2 421 . . 3 (𝐴𝑉 → (𝐴 E 𝑦𝑦 E 𝐴))
6 epelg 4207 . . 3 (𝐴𝑉 → (𝑦 E 𝐴𝑦𝐴))
73, 5, 63bitrd 213 . 2 (𝐴𝑉 → (𝑦 ∈ [𝐴] E ↔ 𝑦𝐴))
87eqrdv 2135 1 (𝐴𝑉 → [𝐴] E = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wcel 1480  Vcvv 2681   class class class wbr 3924   E cep 4204  ccnv 4533  [cec 6420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-eprel 4206  df-xp 4540  df-cnv 4542  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-ec 6424
This theorem is referenced by:  addcnsrec  7643  mulcnsrec  7644
  Copyright terms: Public domain W3C validator