Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecidg | GIF version |
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.) |
Ref | Expression |
---|---|
ecidg | ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | elecg 6563 | . . . 4 ⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦)) | |
3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦)) |
4 | brcnvg 4801 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V) → (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴)) | |
5 | 1, 4 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴)) |
6 | epelg 4284 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
7 | 3, 5, 6 | 3bitrd 214 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]◡ E ↔ 𝑦 ∈ 𝐴)) |
8 | 7 | eqrdv 2173 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 Vcvv 2735 class class class wbr 3998 E cep 4281 ◡ccnv 4619 [cec 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-eprel 4283 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-ec 6527 |
This theorem is referenced by: addcnsrec 7816 mulcnsrec 7817 |
Copyright terms: Public domain | W3C validator |