| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecidg | GIF version | ||
| Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.) |
| Ref | Expression |
|---|---|
| ecidg | ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . 4 ⊢ 𝑦 ∈ V | |
| 2 | elecg 6728 | . . . 4 ⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦)) | |
| 3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦)) |
| 4 | brcnvg 4903 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V) → (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴)) | |
| 5 | 1, 4 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴)) |
| 6 | epelg 4381 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 7 | 3, 5, 6 | 3bitrd 214 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]◡ E ↔ 𝑦 ∈ 𝐴)) |
| 8 | 7 | eqrdv 2227 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 class class class wbr 4083 E cep 4378 ◡ccnv 4718 [cec 6686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-eprel 4380 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-ec 6690 |
| This theorem is referenced by: addcnsrec 8037 mulcnsrec 8038 |
| Copyright terms: Public domain | W3C validator |