![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecidg | GIF version |
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.) |
Ref | Expression |
---|---|
ecidg | ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | elecg 6627 | . . . 4 ⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦)) | |
3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦)) |
4 | brcnvg 4843 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V) → (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴)) | |
5 | 1, 4 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴)) |
6 | epelg 4321 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
7 | 3, 5, 6 | 3bitrd 214 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]◡ E ↔ 𝑦 ∈ 𝐴)) |
8 | 7 | eqrdv 2191 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 class class class wbr 4029 E cep 4318 ◡ccnv 4658 [cec 6585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-eprel 4320 df-xp 4665 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-ec 6589 |
This theorem is referenced by: addcnsrec 7902 mulcnsrec 7903 |
Copyright terms: Public domain | W3C validator |