| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecidg | GIF version | ||
| Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.) |
| Ref | Expression |
|---|---|
| ecidg | ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2782 | . . . 4 ⊢ 𝑦 ∈ V | |
| 2 | elecg 6690 | . . . 4 ⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦)) | |
| 3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦)) |
| 4 | brcnvg 4880 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V) → (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴)) | |
| 5 | 1, 4 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴)) |
| 6 | epelg 4358 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 7 | 3, 5, 6 | 3bitrd 214 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]◡ E ↔ 𝑦 ∈ 𝐴)) |
| 8 | 7 | eqrdv 2207 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 Vcvv 2779 class class class wbr 4062 E cep 4355 ◡ccnv 4695 [cec 6648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-eprel 4357 df-xp 4702 df-cnv 4704 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-ec 6652 |
| This theorem is referenced by: addcnsrec 7997 mulcnsrec 7998 |
| Copyright terms: Public domain | W3C validator |