ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecidg GIF version

Theorem ecidg 6601
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.)
Assertion
Ref Expression
ecidg (𝐴𝑉 → [𝐴] E = 𝐴)

Proof of Theorem ecidg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . 4 𝑦 ∈ V
2 elecg 6575 . . . 4 ((𝑦 ∈ V ∧ 𝐴𝑉) → (𝑦 ∈ [𝐴] E ↔ 𝐴 E 𝑦))
31, 2mpan 424 . . 3 (𝐴𝑉 → (𝑦 ∈ [𝐴] E ↔ 𝐴 E 𝑦))
4 brcnvg 4810 . . . 4 ((𝐴𝑉𝑦 ∈ V) → (𝐴 E 𝑦𝑦 E 𝐴))
51, 4mpan2 425 . . 3 (𝐴𝑉 → (𝐴 E 𝑦𝑦 E 𝐴))
6 epelg 4292 . . 3 (𝐴𝑉 → (𝑦 E 𝐴𝑦𝐴))
73, 5, 63bitrd 214 . 2 (𝐴𝑉 → (𝑦 ∈ [𝐴] E ↔ 𝑦𝐴))
87eqrdv 2175 1 (𝐴𝑉 → [𝐴] E = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2148  Vcvv 2739   class class class wbr 4005   E cep 4289  ccnv 4627  [cec 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-eprel 4291  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-ec 6539
This theorem is referenced by:  addcnsrec  7843  mulcnsrec  7844
  Copyright terms: Public domain W3C validator