ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcnsrec Unicode version

Theorem mulcnsrec 7675
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6501, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7673. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
mulcnsrec  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  x.  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. ] `'  _E  )

Proof of Theorem mulcnsrec
StepHypRef Expression
1 mulcnsr 7667 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)
2 opelxpi 4579 . . . 4  |-  ( ( A  e.  R.  /\  B  e.  R. )  -> 
<. A ,  B >.  e.  ( R.  X.  R. ) )
3 ecidg 6501 . . . 4  |-  ( <. A ,  B >.  e.  ( R.  X.  R. )  ->  [ <. A ,  B >. ] `'  _E  =  <. A ,  B >. )
42, 3syl 14 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  [ <. A ,  B >. ] `'  _E  =  <. A ,  B >. )
5 opelxpi 4579 . . . 4  |-  ( ( C  e.  R.  /\  D  e.  R. )  -> 
<. C ,  D >.  e.  ( R.  X.  R. ) )
6 ecidg 6501 . . . 4  |-  ( <. C ,  D >.  e.  ( R.  X.  R. )  ->  [ <. C ,  D >. ] `'  _E  =  <. C ,  D >. )
75, 6syl 14 . . 3  |-  ( ( C  e.  R.  /\  D  e.  R. )  ->  [ <. C ,  D >. ] `'  _E  =  <. C ,  D >. )
84, 7oveqan12d 5801 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  x.  [ <. C ,  D >. ] `'  _E  )  =  ( <. A ,  B >.  x. 
<. C ,  D >. ) )
9 simpll 519 . . . . . 6  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  A  e.  R. )
10 simprl 521 . . . . . 6  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  C  e.  R. )
11 mulclsr 7586 . . . . . 6  |-  ( ( A  e.  R.  /\  C  e.  R. )  ->  ( A  .R  C
)  e.  R. )
129, 10, 11syl2anc 409 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  .R  C )  e.  R. )
13 m1r 7584 . . . . . 6  |-  -1R  e.  R.
14 simplr 520 . . . . . . 7  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  B  e.  R. )
15 simprr 522 . . . . . . 7  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  D  e.  R. )
16 mulclsr 7586 . . . . . . 7  |-  ( ( B  e.  R.  /\  D  e.  R. )  ->  ( B  .R  D
)  e.  R. )
1714, 15, 16syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  .R  D )  e.  R. )
18 mulclsr 7586 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( B  .R  D )  e.  R. )  -> 
( -1R  .R  ( B  .R  D ) )  e.  R. )
1913, 17, 18sylancr 411 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( -1R  .R  ( B  .R  D
) )  e.  R. )
20 addclsr 7585 . . . . 5  |-  ( ( ( A  .R  C
)  e.  R.  /\  ( -1R  .R  ( B  .R  D ) )  e.  R. )  -> 
( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R. )
2112, 19, 20syl2anc 409 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R. )
22 mulclsr 7586 . . . . . 6  |-  ( ( B  e.  R.  /\  C  e.  R. )  ->  ( B  .R  C
)  e.  R. )
2314, 10, 22syl2anc 409 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  .R  C )  e.  R. )
24 mulclsr 7586 . . . . . 6  |-  ( ( A  e.  R.  /\  D  e.  R. )  ->  ( A  .R  D
)  e.  R. )
259, 15, 24syl2anc 409 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  .R  D )  e.  R. )
26 addclsr 7585 . . . . 5  |-  ( ( ( B  .R  C
)  e.  R.  /\  ( A  .R  D )  e.  R. )  -> 
( ( B  .R  C )  +R  ( A  .R  D ) )  e.  R. )
2723, 25, 26syl2anc 409 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( ( B  .R  C )  +R  ( A  .R  D
) )  e.  R. )
28 opelxpi 4579 . . . 4  |-  ( ( ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R.  /\  (
( B  .R  C
)  +R  ( A  .R  D ) )  e.  R. )  ->  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >.  e.  ( R.  X.  R. )
)
2921, 27, 28syl2anc 409 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C
)  +R  ( A  .R  D ) )
>.  e.  ( R.  X.  R. ) )
30 ecidg 6501 . . 3  |-  ( <.
( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >.  e.  ( R.  X.  R. )  ->  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >. ] `'  _E  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. )
3129, 30syl 14 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  [ <. (
( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. ] `'  _E  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C
)  +R  ( A  .R  D ) )
>. )
321, 8, 313eqtr4d 2183 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  x.  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. ] `'  _E  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   <.cop 3535    _E cep 4217    X. cxp 4545   `'ccnv 4546  (class class class)co 5782   [cec 6435   R.cnr 7129   -1Rcm1r 7132    +R cplr 7133    .R cmr 7134    x. cmul 7649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-imp 7301  df-enr 7558  df-nr 7559  df-plr 7560  df-mr 7561  df-m1r 7565  df-c 7650  df-mul 7656
This theorem is referenced by:  axmulcom  7703  axmulass  7705  axdistr  7706
  Copyright terms: Public domain W3C validator