| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcnsrec | Unicode version | ||
| Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6667, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7925. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulcnsrec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcnsr 7919 |
. 2
| |
| 2 | opelxpi 4696 |
. . . 4
| |
| 3 | ecidg 6667 |
. . . 4
| |
| 4 | 2, 3 | syl 14 |
. . 3
|
| 5 | opelxpi 4696 |
. . . 4
| |
| 6 | ecidg 6667 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 4, 7 | oveqan12d 5944 |
. 2
|
| 9 | simpll 527 |
. . . . . 6
| |
| 10 | simprl 529 |
. . . . . 6
| |
| 11 | mulclsr 7838 |
. . . . . 6
| |
| 12 | 9, 10, 11 | syl2anc 411 |
. . . . 5
|
| 13 | m1r 7836 |
. . . . . 6
| |
| 14 | simplr 528 |
. . . . . . 7
| |
| 15 | simprr 531 |
. . . . . . 7
| |
| 16 | mulclsr 7838 |
. . . . . . 7
| |
| 17 | 14, 15, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | mulclsr 7838 |
. . . . . 6
| |
| 19 | 13, 17, 18 | sylancr 414 |
. . . . 5
|
| 20 | addclsr 7837 |
. . . . 5
| |
| 21 | 12, 19, 20 | syl2anc 411 |
. . . 4
|
| 22 | mulclsr 7838 |
. . . . . 6
| |
| 23 | 14, 10, 22 | syl2anc 411 |
. . . . 5
|
| 24 | mulclsr 7838 |
. . . . . 6
| |
| 25 | 9, 15, 24 | syl2anc 411 |
. . . . 5
|
| 26 | addclsr 7837 |
. . . . 5
| |
| 27 | 23, 25, 26 | syl2anc 411 |
. . . 4
|
| 28 | opelxpi 4696 |
. . . 4
| |
| 29 | 21, 27, 28 | syl2anc 411 |
. . 3
|
| 30 | ecidg 6667 |
. . 3
| |
| 31 | 29, 30 | syl 14 |
. 2
|
| 32 | 1, 8, 31 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-i1p 7551 df-iplp 7552 df-imp 7553 df-enr 7810 df-nr 7811 df-plr 7812 df-mr 7813 df-m1r 7817 df-c 7902 df-mul 7908 |
| This theorem is referenced by: axmulcom 7955 axmulass 7957 axdistr 7958 |
| Copyright terms: Public domain | W3C validator |