ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcnsrec Unicode version

Theorem mulcnsrec 7380
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6356, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7378. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
mulcnsrec  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  x.  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. ] `'  _E  )

Proof of Theorem mulcnsrec
StepHypRef Expression
1 mulcnsr 7372 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)
2 opelxpi 4469 . . . 4  |-  ( ( A  e.  R.  /\  B  e.  R. )  -> 
<. A ,  B >.  e.  ( R.  X.  R. ) )
3 ecidg 6356 . . . 4  |-  ( <. A ,  B >.  e.  ( R.  X.  R. )  ->  [ <. A ,  B >. ] `'  _E  =  <. A ,  B >. )
42, 3syl 14 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  [ <. A ,  B >. ] `'  _E  =  <. A ,  B >. )
5 opelxpi 4469 . . . 4  |-  ( ( C  e.  R.  /\  D  e.  R. )  -> 
<. C ,  D >.  e.  ( R.  X.  R. ) )
6 ecidg 6356 . . . 4  |-  ( <. C ,  D >.  e.  ( R.  X.  R. )  ->  [ <. C ,  D >. ] `'  _E  =  <. C ,  D >. )
75, 6syl 14 . . 3  |-  ( ( C  e.  R.  /\  D  e.  R. )  ->  [ <. C ,  D >. ] `'  _E  =  <. C ,  D >. )
84, 7oveqan12d 5671 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  x.  [ <. C ,  D >. ] `'  _E  )  =  ( <. A ,  B >.  x. 
<. C ,  D >. ) )
9 simpll 496 . . . . . 6  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  A  e.  R. )
10 simprl 498 . . . . . 6  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  C  e.  R. )
11 mulclsr 7300 . . . . . 6  |-  ( ( A  e.  R.  /\  C  e.  R. )  ->  ( A  .R  C
)  e.  R. )
129, 10, 11syl2anc 403 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  .R  C )  e.  R. )
13 m1r 7298 . . . . . 6  |-  -1R  e.  R.
14 simplr 497 . . . . . . 7  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  B  e.  R. )
15 simprr 499 . . . . . . 7  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  D  e.  R. )
16 mulclsr 7300 . . . . . . 7  |-  ( ( B  e.  R.  /\  D  e.  R. )  ->  ( B  .R  D
)  e.  R. )
1714, 15, 16syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  .R  D )  e.  R. )
18 mulclsr 7300 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( B  .R  D )  e.  R. )  -> 
( -1R  .R  ( B  .R  D ) )  e.  R. )
1913, 17, 18sylancr 405 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( -1R  .R  ( B  .R  D
) )  e.  R. )
20 addclsr 7299 . . . . 5  |-  ( ( ( A  .R  C
)  e.  R.  /\  ( -1R  .R  ( B  .R  D ) )  e.  R. )  -> 
( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R. )
2112, 19, 20syl2anc 403 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R. )
22 mulclsr 7300 . . . . . 6  |-  ( ( B  e.  R.  /\  C  e.  R. )  ->  ( B  .R  C
)  e.  R. )
2314, 10, 22syl2anc 403 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  .R  C )  e.  R. )
24 mulclsr 7300 . . . . . 6  |-  ( ( A  e.  R.  /\  D  e.  R. )  ->  ( A  .R  D
)  e.  R. )
259, 15, 24syl2anc 403 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  .R  D )  e.  R. )
26 addclsr 7299 . . . . 5  |-  ( ( ( B  .R  C
)  e.  R.  /\  ( A  .R  D )  e.  R. )  -> 
( ( B  .R  C )  +R  ( A  .R  D ) )  e.  R. )
2723, 25, 26syl2anc 403 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( ( B  .R  C )  +R  ( A  .R  D
) )  e.  R. )
28 opelxpi 4469 . . . 4  |-  ( ( ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R.  /\  (
( B  .R  C
)  +R  ( A  .R  D ) )  e.  R. )  ->  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >.  e.  ( R.  X.  R. )
)
2921, 27, 28syl2anc 403 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C
)  +R  ( A  .R  D ) )
>.  e.  ( R.  X.  R. ) )
30 ecidg 6356 . . 3  |-  ( <.
( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >.  e.  ( R.  X.  R. )  ->  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >. ] `'  _E  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. )
3129, 30syl 14 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  [ <. (
( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. ] `'  _E  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C
)  +R  ( A  .R  D ) )
>. )
321, 8, 313eqtr4d 2130 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  x.  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. ] `'  _E  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   <.cop 3449    _E cep 4114    X. cxp 4436   `'ccnv 4437  (class class class)co 5652   [cec 6290   R.cnr 6856   -1Rcm1r 6859    +R cplr 6860    .R cmr 6861    x. cmul 7355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-2o 6182  df-oadd 6185  df-omul 6186  df-er 6292  df-ec 6294  df-qs 6298  df-ni 6863  df-pli 6864  df-mi 6865  df-lti 6866  df-plpq 6903  df-mpq 6904  df-enq 6906  df-nqqs 6907  df-plqqs 6908  df-mqqs 6909  df-1nqqs 6910  df-rq 6911  df-ltnqqs 6912  df-enq0 6983  df-nq0 6984  df-0nq0 6985  df-plq0 6986  df-mq0 6987  df-inp 7025  df-i1p 7026  df-iplp 7027  df-imp 7028  df-enr 7272  df-nr 7273  df-plr 7274  df-mr 7275  df-m1r 7279  df-c 7356  df-mul 7362
This theorem is referenced by:  axmulcom  7406  axmulass  7408  axdistr  7409
  Copyright terms: Public domain W3C validator