ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopqsi Unicode version

Theorem ecopqsi 6677
Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
Hypotheses
Ref Expression
ecopqsi.1  |-  R  e. 
_V
ecopqsi.2  |-  S  =  ( ( A  X.  A ) /. R
)
Assertion
Ref Expression
ecopqsi  |-  ( ( B  e.  A  /\  C  e.  A )  ->  [ <. B ,  C >. ] R  e.  S
)

Proof of Theorem ecopqsi
StepHypRef Expression
1 opelxpi 4707 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  -> 
<. B ,  C >.  e.  ( A  X.  A
) )
2 ecopqsi.1 . . . 4  |-  R  e. 
_V
32ecelqsi 6676 . . 3  |-  ( <. B ,  C >.  e.  ( A  X.  A
)  ->  [ <. B ,  C >. ] R  e.  ( ( A  X.  A ) /. R
) )
4 ecopqsi.2 . . 3  |-  S  =  ( ( A  X.  A ) /. R
)
53, 4eleqtrrdi 2299 . 2  |-  ( <. B ,  C >.  e.  ( A  X.  A
)  ->  [ <. B ,  C >. ] R  e.  S )
61, 5syl 14 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  [ <. B ,  C >. ] R  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   <.cop 3636    X. cxp 4673   [cec 6618   /.cqs 6619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-ec 6622  df-qs 6626
This theorem is referenced by:  brecop  6712  recexgt0sr  7886  ltpsrprg  7916
  Copyright terms: Public domain W3C validator