| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecelqsi | Unicode version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsi.1 |
|
| Ref | Expression |
|---|---|
| ecelqsi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 |
. 2
| |
| 2 | ecelqsg 6656 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: ecopqsi 6658 th3q 6708 1nq 7450 addclnq 7459 mulclnq 7460 recexnq 7474 ltexnqq 7492 prarloclemarch 7502 prarloclemarch2 7503 nnnq 7506 nqnq0 7525 addnnnq0 7533 mulnnnq0 7534 addclnq0 7535 mulclnq0 7536 nqpnq0nq 7537 prarloclemlt 7577 prarloclemlo 7578 prarloclemcalc 7586 nqprm 7626 addsrpr 7829 mulsrpr 7830 0r 7834 1sr 7835 m1r 7836 addclsr 7837 mulclsr 7838 prsrcl 7868 mappsrprg 7888 suplocsrlemb 7890 pitonnlem2 7931 pitonn 7932 pitore 7934 recnnre 7935 |
| Copyright terms: Public domain | W3C validator |