Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecelqsi | Unicode version |
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecelqsi.1 |
Ref | Expression |
---|---|
ecelqsi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecelqsi.1 | . 2 | |
2 | ecelqsg 6578 | . 2 | |
3 | 1, 2 | mpan 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 cvv 2735 cec 6523 cqs 6524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-ec 6527 df-qs 6531 |
This theorem is referenced by: ecopqsi 6580 th3q 6630 1nq 7340 addclnq 7349 mulclnq 7350 recexnq 7364 ltexnqq 7382 prarloclemarch 7392 prarloclemarch2 7393 nnnq 7396 nqnq0 7415 addnnnq0 7423 mulnnnq0 7424 addclnq0 7425 mulclnq0 7426 nqpnq0nq 7427 prarloclemlt 7467 prarloclemlo 7468 prarloclemcalc 7476 nqprm 7516 addsrpr 7719 mulsrpr 7720 0r 7724 1sr 7725 m1r 7726 addclsr 7727 mulclsr 7728 prsrcl 7758 mappsrprg 7778 suplocsrlemb 7780 pitonnlem2 7821 pitonn 7822 pitore 7824 recnnre 7825 |
Copyright terms: Public domain | W3C validator |