| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecelqsi | Unicode version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsi.1 |
|
| Ref | Expression |
|---|---|
| ecelqsi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 |
. 2
| |
| 2 | ecelqsg 6688 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-ec 6635 df-qs 6639 |
| This theorem is referenced by: ecopqsi 6690 th3q 6740 1nq 7499 addclnq 7508 mulclnq 7509 recexnq 7523 ltexnqq 7541 prarloclemarch 7551 prarloclemarch2 7552 nnnq 7555 nqnq0 7574 addnnnq0 7582 mulnnnq0 7583 addclnq0 7584 mulclnq0 7585 nqpnq0nq 7586 prarloclemlt 7626 prarloclemlo 7627 prarloclemcalc 7635 nqprm 7675 addsrpr 7878 mulsrpr 7879 0r 7883 1sr 7884 m1r 7885 addclsr 7886 mulclsr 7887 prsrcl 7917 mappsrprg 7937 suplocsrlemb 7939 pitonnlem2 7980 pitonn 7981 pitore 7983 recnnre 7984 |
| Copyright terms: Public domain | W3C validator |