ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecelqsi Unicode version

Theorem ecelqsi 6675
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecelqsi.1  |-  R  e. 
_V
Assertion
Ref Expression
ecelqsi  |-  ( B  e.  A  ->  [ B ] R  e.  ( A /. R ) )

Proof of Theorem ecelqsi
StepHypRef Expression
1 ecelqsi.1 . 2  |-  R  e. 
_V
2 ecelqsg 6674 . 2  |-  ( ( R  e.  _V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R
) )
31, 2mpan 424 1  |-  ( B  e.  A  ->  [ B ] R  e.  ( A /. R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   _Vcvv 2771   [cec 6617   /.cqs 6618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-ec 6621  df-qs 6625
This theorem is referenced by:  ecopqsi  6676  th3q  6726  1nq  7478  addclnq  7487  mulclnq  7488  recexnq  7502  ltexnqq  7520  prarloclemarch  7530  prarloclemarch2  7531  nnnq  7534  nqnq0  7553  addnnnq0  7561  mulnnnq0  7562  addclnq0  7563  mulclnq0  7564  nqpnq0nq  7565  prarloclemlt  7605  prarloclemlo  7606  prarloclemcalc  7614  nqprm  7654  addsrpr  7857  mulsrpr  7858  0r  7862  1sr  7863  m1r  7864  addclsr  7865  mulclsr  7866  prsrcl  7896  mappsrprg  7916  suplocsrlemb  7918  pitonnlem2  7959  pitonn  7960  pitore  7962  recnnre  7963
  Copyright terms: Public domain W3C validator