Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecelqsi | Unicode version |
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecelqsi.1 |
Ref | Expression |
---|---|
ecelqsi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecelqsi.1 | . 2 | |
2 | ecelqsg 6522 | . 2 | |
3 | 1, 2 | mpan 421 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2125 cvv 2709 cec 6467 cqs 6468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-cnv 4587 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-ec 6471 df-qs 6475 |
This theorem is referenced by: ecopqsi 6524 th3q 6574 1nq 7265 addclnq 7274 mulclnq 7275 recexnq 7289 ltexnqq 7307 prarloclemarch 7317 prarloclemarch2 7318 nnnq 7321 nqnq0 7340 addnnnq0 7348 mulnnnq0 7349 addclnq0 7350 mulclnq0 7351 nqpnq0nq 7352 prarloclemlt 7392 prarloclemlo 7393 prarloclemcalc 7401 nqprm 7441 addsrpr 7644 mulsrpr 7645 0r 7649 1sr 7650 m1r 7651 addclsr 7652 mulclsr 7653 prsrcl 7683 mappsrprg 7703 suplocsrlemb 7705 pitonnlem2 7746 pitonn 7747 pitore 7749 recnnre 7750 |
Copyright terms: Public domain | W3C validator |