| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecelqsi | Unicode version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsi.1 |
|
| Ref | Expression |
|---|---|
| ecelqsi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 |
. 2
| |
| 2 | ecelqsg 6733 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-ec 6680 df-qs 6684 |
| This theorem is referenced by: ecopqsi 6735 th3q 6785 1nq 7549 addclnq 7558 mulclnq 7559 recexnq 7573 ltexnqq 7591 prarloclemarch 7601 prarloclemarch2 7602 nnnq 7605 nqnq0 7624 addnnnq0 7632 mulnnnq0 7633 addclnq0 7634 mulclnq0 7635 nqpnq0nq 7636 prarloclemlt 7676 prarloclemlo 7677 prarloclemcalc 7685 nqprm 7725 addsrpr 7928 mulsrpr 7929 0r 7933 1sr 7934 m1r 7935 addclsr 7936 mulclsr 7937 prsrcl 7967 mappsrprg 7987 suplocsrlemb 7989 pitonnlem2 8030 pitonn 8031 pitore 8033 recnnre 8034 |
| Copyright terms: Public domain | W3C validator |