| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecelqsi | Unicode version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsi.1 |
|
| Ref | Expression |
|---|---|
| ecelqsi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 |
. 2
| |
| 2 | ecelqsg 6674 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-ec 6621 df-qs 6625 |
| This theorem is referenced by: ecopqsi 6676 th3q 6726 1nq 7478 addclnq 7487 mulclnq 7488 recexnq 7502 ltexnqq 7520 prarloclemarch 7530 prarloclemarch2 7531 nnnq 7534 nqnq0 7553 addnnnq0 7561 mulnnnq0 7562 addclnq0 7563 mulclnq0 7564 nqpnq0nq 7565 prarloclemlt 7605 prarloclemlo 7606 prarloclemcalc 7614 nqprm 7654 addsrpr 7857 mulsrpr 7858 0r 7862 1sr 7863 m1r 7864 addclsr 7865 mulclsr 7866 prsrcl 7896 mappsrprg 7916 suplocsrlemb 7918 pitonnlem2 7959 pitonn 7960 pitore 7962 recnnre 7963 |
| Copyright terms: Public domain | W3C validator |