| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopqsi | GIF version | ||
| Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.) |
| Ref | Expression |
|---|---|
| ecopqsi.1 | ⊢ 𝑅 ∈ V |
| ecopqsi.2 | ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) |
| Ref | Expression |
|---|---|
| ecopqsi | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4715 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴)) | |
| 2 | ecopqsi.1 | . . . 4 ⊢ 𝑅 ∈ V | |
| 3 | 2 | ecelqsi 6689 | . . 3 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ ((𝐴 × 𝐴) / 𝑅)) |
| 4 | ecopqsi.2 | . . 3 ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) | |
| 5 | 3, 4 | eleqtrrdi 2300 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| 6 | 1, 5 | syl 14 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 〈cop 3641 × cxp 4681 [cec 6631 / cqs 6632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-ec 6635 df-qs 6639 |
| This theorem is referenced by: brecop 6725 recexgt0sr 7906 ltpsrprg 7936 |
| Copyright terms: Public domain | W3C validator |