ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpsrprg Unicode version

Theorem ltpsrprg 7765
Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
ltpsrprg  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. A ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. B ,  1P >. ]  ~R  )  <->  A 
<P  B ) )

Proof of Theorem ltpsrprg
StepHypRef Expression
1 simp1 992 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  A  e.  P. )
2 1pr 7516 . . . 4  |-  1P  e.  P.
3 enrex 7699 . . . . 5  |-  ~R  e.  _V
4 df-nr 7689 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
53, 4ecopqsi 6568 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  ->  [ <. A ,  1P >. ]  ~R  e.  R. )
61, 2, 5sylancl 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  [ <. A ,  1P >. ]  ~R  e.  R. )
7 simp2 993 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  B  e.  P. )
83, 4ecopqsi 6568 . . . 4  |-  ( ( B  e.  P.  /\  1P  e.  P. )  ->  [ <. B ,  1P >. ]  ~R  e.  R. )
97, 2, 8sylancl 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  [ <. B ,  1P >. ]  ~R  e.  R. )
10 simp3 994 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  C  e.  R. )
11 ltasrg 7732 . . 3  |-  ( ( [ <. A ,  1P >. ]  ~R  e.  R.  /\ 
[ <. B ,  1P >. ]  ~R  e.  R.  /\  C  e.  R. )  ->  ( [ <. A ,  1P >. ]  ~R  <R  [
<. B ,  1P >. ]  ~R  <->  ( C  +R  [
<. A ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. B ,  1P >. ]  ~R  )
) )
126, 9, 10, 11syl3anc 1233 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  ( [ <. A ,  1P >. ]  ~R  <R  [ <. B ,  1P >. ]  ~R  <->  ( C  +R  [ <. A ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. B ,  1P >. ]  ~R  ) ) )
13 addcomprg 7540 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  =  ( 1P  +P.  A ) )
141, 2, 13sylancl 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  ( A  +P.  1P )  =  ( 1P  +P.  A
) )
1514breq1d 3999 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  (
( A  +P.  1P )  <P  ( 1P  +P.  B )  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
162a1i 9 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  1P  e.  P. )
17 ltsrprg 7709 . . . 4  |-  ( ( ( A  e.  P.  /\  1P  e.  P. )  /\  ( B  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. A ,  1P >. ]  ~R  <R  [ <. B ,  1P >. ]  ~R  <->  ( A  +P.  1P )  <P  ( 1P  +P.  B ) ) )
181, 16, 7, 16, 17syl22anc 1234 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  ( [ <. A ,  1P >. ]  ~R  <R  [ <. B ,  1P >. ]  ~R  <->  ( A  +P.  1P ) 
<P  ( 1P  +P.  B
) ) )
19 ltaprg 7581 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
201, 7, 16, 19syl3anc 1233 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
2115, 18, 203bitr4d 219 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  ( [ <. A ,  1P >. ]  ~R  <R  [ <. B ,  1P >. ]  ~R  <->  A 
<P  B ) )
2212, 21bitr3d 189 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. A ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. B ,  1P >. ]  ~R  )  <->  A 
<P  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989  (class class class)co 5853   [cec 6511   P.cnp 7253   1Pc1p 7254    +P. cpp 7255    <P cltp 7257    ~R cer 7258   R.cnr 7259    +R cplr 7263    <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-iltp 7432  df-enr 7688  df-nr 7689  df-plr 7690  df-ltr 7692
This theorem is referenced by:  suplocsrlemb  7768  suplocsrlempr  7769  suplocsrlem  7770
  Copyright terms: Public domain W3C validator