| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecss | GIF version | ||
| Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| Ref | Expression |
|---|---|
| ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 6629 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imassrn 5038 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
| 3 | 1, 2 | eqsstri 3226 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
| 4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 5 | errn 6649 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
| 7 | 3, 6 | sseqtrid 3244 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3167 {csn 3634 ran crn 4680 “ cima 4682 Er wer 6624 [cec 6625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-er 6627 df-ec 6629 |
| This theorem is referenced by: qsss 6688 divsfval 13204 divsfvalg 13205 |
| Copyright terms: Public domain | W3C validator |