ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecss GIF version

Theorem ecss 6630
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ecss (𝜑 → [𝐴]𝑅𝑋)

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 6589 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imassrn 5016 . . 3 (𝑅 “ {𝐴}) ⊆ ran 𝑅
31, 2eqsstri 3211 . 2 [𝐴]𝑅 ⊆ ran 𝑅
4 ecss.1 . . 3 (𝜑𝑅 Er 𝑋)
5 errn 6609 . . 3 (𝑅 Er 𝑋 → ran 𝑅 = 𝑋)
64, 5syl 14 . 2 (𝜑 → ran 𝑅 = 𝑋)
73, 6sseqtrid 3229 1 (𝜑 → [𝐴]𝑅𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3153  {csn 3618  ran crn 4660  cima 4662   Er wer 6584  [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-er 6587  df-ec 6589
This theorem is referenced by:  qsss  6648  divsfval  12911  divsfvalg  12912
  Copyright terms: Public domain W3C validator