| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecss | GIF version | ||
| Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| Ref | Expression |
|---|---|
| ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 6652 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imassrn 5055 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
| 3 | 1, 2 | eqsstri 3236 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
| 4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 5 | errn 6672 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
| 7 | 3, 6 | sseqtrid 3254 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ⊆ wss 3177 {csn 3646 ran crn 4697 “ cima 4699 Er wer 6647 [cec 6648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-cnv 4704 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-er 6650 df-ec 6652 |
| This theorem is referenced by: qsss 6711 divsfval 13327 divsfvalg 13328 |
| Copyright terms: Public domain | W3C validator |