ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecss GIF version

Theorem ecss 6731
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ecss (𝜑 → [𝐴]𝑅𝑋)

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 6690 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imassrn 5079 . . 3 (𝑅 “ {𝐴}) ⊆ ran 𝑅
31, 2eqsstri 3256 . 2 [𝐴]𝑅 ⊆ ran 𝑅
4 ecss.1 . . 3 (𝜑𝑅 Er 𝑋)
5 errn 6710 . . 3 (𝑅 Er 𝑋 → ran 𝑅 = 𝑋)
64, 5syl 14 . 2 (𝜑 → ran 𝑅 = 𝑋)
73, 6sseqtrid 3274 1 (𝜑 → [𝐴]𝑅𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197  {csn 3666  ran crn 4720  cima 4722   Er wer 6685  [cec 6686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-er 6688  df-ec 6690
This theorem is referenced by:  qsss  6749  divsfval  13369  divsfvalg  13370
  Copyright terms: Public domain W3C validator