ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecss GIF version

Theorem ecss 6693
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ecss (𝜑 → [𝐴]𝑅𝑋)

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 6652 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imassrn 5055 . . 3 (𝑅 “ {𝐴}) ⊆ ran 𝑅
31, 2eqsstri 3236 . 2 [𝐴]𝑅 ⊆ ran 𝑅
4 ecss.1 . . 3 (𝜑𝑅 Er 𝑋)
5 errn 6672 . . 3 (𝑅 Er 𝑋 → ran 𝑅 = 𝑋)
64, 5syl 14 . 2 (𝜑 → ran 𝑅 = 𝑋)
73, 6sseqtrid 3254 1 (𝜑 → [𝐴]𝑅𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wss 3177  {csn 3646  ran crn 4697  cima 4699   Er wer 6647  [cec 6648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-cnv 4704  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-er 6650  df-ec 6652
This theorem is referenced by:  qsss  6711  divsfval  13327  divsfvalg  13328
  Copyright terms: Public domain W3C validator