ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfvalg Unicode version

Theorem divsfvalg 13161
Description: Value of the function in qusval 13155. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbl.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
divsfvalg  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Distinct variable groups:    x,  .~    x, A   
x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem divsfvalg
StepHypRef Expression
1 ercpbl.f . 2  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
2 eceq1 6655 . 2  |-  ( x  =  A  ->  [ x ]  .~  =  [ A ]  .~  )
3 ercpbl.a . 2  |-  ( ph  ->  A  e.  V )
4 ercpbl.v . . 3  |-  ( ph  ->  V  e.  W )
5 ercpbl.r . . . 4  |-  ( ph  ->  .~  Er  V )
65ecss 6663 . . 3  |-  ( ph  ->  [ A ]  .~  C_  V )
74, 6ssexd 4184 . 2  |-  ( ph  ->  [ A ]  .~  e.  _V )
81, 2, 3, 7fvmptd3 5673 1  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    |-> cmpt 4105   ` cfv 5271    Er wer 6617   [cec 6618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fv 5279  df-er 6620  df-ec 6622
This theorem is referenced by:  ercpbllemg  13162  qusaddvallemg  13165  qusgrp2  13449  qusring2  13828
  Copyright terms: Public domain W3C validator