ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfvalg Unicode version

Theorem divsfvalg 13357
Description: Value of the function in qusval 13351. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbl.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
divsfvalg  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Distinct variable groups:    x,  .~    x, A   
x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem divsfvalg
StepHypRef Expression
1 ercpbl.f . 2  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
2 eceq1 6713 . 2  |-  ( x  =  A  ->  [ x ]  .~  =  [ A ]  .~  )
3 ercpbl.a . 2  |-  ( ph  ->  A  e.  V )
4 ercpbl.v . . 3  |-  ( ph  ->  V  e.  W )
5 ercpbl.r . . . 4  |-  ( ph  ->  .~  Er  V )
65ecss 6721 . . 3  |-  ( ph  ->  [ A ]  .~  C_  V )
74, 6ssexd 4223 . 2  |-  ( ph  ->  [ A ]  .~  e.  _V )
81, 2, 3, 7fvmptd3 5727 1  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    |-> cmpt 4144   ` cfv 5317    Er wer 6675   [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fv 5325  df-er 6678  df-ec 6680
This theorem is referenced by:  ercpbllemg  13358  qusaddvallemg  13361  qusgrp2  13645  qusring2  14024
  Copyright terms: Public domain W3C validator