ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfvalg Unicode version

Theorem divsfvalg 12802
Description: Value of the function in qusval 12797. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbl.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
divsfvalg  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Distinct variable groups:    x,  .~    x, A   
x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem divsfvalg
StepHypRef Expression
1 ercpbl.f . 2  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
2 eceq1 6593 . 2  |-  ( x  =  A  ->  [ x ]  .~  =  [ A ]  .~  )
3 ercpbl.a . 2  |-  ( ph  ->  A  e.  V )
4 ercpbl.v . . 3  |-  ( ph  ->  V  e.  W )
5 ercpbl.r . . . 4  |-  ( ph  ->  .~  Er  V )
65ecss 6601 . . 3  |-  ( ph  ->  [ A ]  .~  C_  V )
74, 6ssexd 4158 . 2  |-  ( ph  ->  [ A ]  .~  e.  _V )
81, 2, 3, 7fvmptd3 5629 1  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   _Vcvv 2752    |-> cmpt 4079   ` cfv 5235    Er wer 6555   [cec 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fv 5243  df-er 6558  df-ec 6560
This theorem is referenced by:  ercpbllemg  12803  qusaddvallemg  12806  qusgrp2  13052  qusring2  13413
  Copyright terms: Public domain W3C validator