ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfvalg Unicode version

Theorem divsfvalg 12753
Description: Value of the function in qusval 12749. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbl.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
divsfvalg  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Distinct variable groups:    x,  .~    x, A   
x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem divsfvalg
StepHypRef Expression
1 ercpbl.f . 2  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
2 eceq1 6572 . 2  |-  ( x  =  A  ->  [ x ]  .~  =  [ A ]  .~  )
3 ercpbl.a . 2  |-  ( ph  ->  A  e.  V )
4 ercpbl.v . . 3  |-  ( ph  ->  V  e.  W )
5 ercpbl.r . . . 4  |-  ( ph  ->  .~  Er  V )
65ecss 6578 . . 3  |-  ( ph  ->  [ A ]  .~  C_  V )
74, 6ssexd 4145 . 2  |-  ( ph  ->  [ A ]  .~  e.  _V )
81, 2, 3, 7fvmptd3 5611 1  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739    |-> cmpt 4066   ` cfv 5218    Er wer 6534   [cec 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fv 5226  df-er 6537  df-ec 6539
This theorem is referenced by:  ercpbllemg  12754  qusaddvallemg  12757
  Copyright terms: Public domain W3C validator