![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elixp | GIF version |
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
elixp.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
elixp | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elixp2 6550 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | elixp.1 | . . 3 ⊢ 𝐹 ∈ V | |
3 | 3anass 949 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) | |
4 | 2, 3 | mpbiran 907 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | 1, 4 | bitri 183 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 945 ∈ wcel 1463 ∀wral 2390 Vcvv 2657 Fn wfn 5076 ‘cfv 5081 Xcixp 6546 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fn 5084 df-fv 5089 df-ixp 6547 |
This theorem is referenced by: elixpconst 6554 ixpin 6571 ixpiinm 6572 elixpsn 6583 |
Copyright terms: Public domain | W3C validator |