ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfrss Unicode version

Theorem cncfrss 13103
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )

Proof of Theorem cncfrss
Dummy variables  a  b  f  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 13099 . . 3  |-  -cn->  =  ( a  e.  ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
)  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21elmpocl1 6031 . 2  |-  ( F  e.  ( A -cn-> B )  ->  A  e.  ~P CC )
32elpwid 3564 1  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2135   A.wral 2442   E.wrex 2443   {crab 2446    C_ wss 3111   ~Pcpw 3553   class class class wbr 3976   ` cfv 5182  (class class class)co 5836    ^m cmap 6605   CCcc 7742    < clt 7924    - cmin 8060   RR+crp 9580   abscabs 10925   -cn->ccncf 13098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-cncf 13099
This theorem is referenced by:  cncff  13105  cncfi  13106  rescncf  13109  cncffvrn  13110  cncfco  13119  cncfmpt2fcntop  13126  mulcncflem  13131  mulcncf  13132  cnlimci  13183
  Copyright terms: Public domain W3C validator