ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfrss Unicode version

Theorem cncfrss 13202
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )

Proof of Theorem cncfrss
Dummy variables  a  b  f  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 13198 . . 3  |-  -cn->  =  ( a  e.  ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
)  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21elmpocl1 6037 . 2  |-  ( F  e.  ( A -cn-> B )  ->  A  e.  ~P CC )
32elpwid 3570 1  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   ~Pcpw 3559   class class class wbr 3982   ` cfv 5188  (class class class)co 5842    ^m cmap 6614   CCcc 7751    < clt 7933    - cmin 8069   RR+crp 9589   abscabs 10939   -cn->ccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-cncf 13198
This theorem is referenced by:  cncff  13204  cncfi  13205  rescncf  13208  cncffvrn  13209  cncfco  13218  cncfmpt2fcntop  13225  mulcncflem  13230  mulcncf  13231  cnlimci  13282
  Copyright terms: Public domain W3C validator