ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfrss Unicode version

Theorem cncfrss 14989
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )

Proof of Theorem cncfrss
Dummy variables  a  b  f  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 14985 . . 3  |-  -cn->  =  ( a  e.  ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
)  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21elmpocl1 6141 . 2  |-  ( F  e.  ( A -cn-> B )  ->  A  e.  ~P CC )
32elpwid 3626 1  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487    C_ wss 3165   ~Pcpw 3615   class class class wbr 4043   ` cfv 5270  (class class class)co 5943    ^m cmap 6734   CCcc 7922    < clt 8106    - cmin 8242   RR+crp 9774   abscabs 11250   -cn->ccncf 14984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-cncf 14985
This theorem is referenced by:  cncff  14991  cncfi  14992  rescncf  14995  cncfcdm  14996  cncfco  15005  cncfmpt2fcntop  15013  mulcncflem  15021  mulcncf  15022  maxcncf  15029  mincncf  15030  cnlimci  15087
  Copyright terms: Public domain W3C validator