Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncfrss | Unicode version |
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncfrss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cncf 13198 | . . 3 | |
2 | 1 | elmpocl1 6037 | . 2 |
3 | 2 | elpwid 3570 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 wral 2444 wrex 2445 crab 2448 wss 3116 cpw 3559 class class class wbr 3982 cfv 5188 (class class class)co 5842 cmap 6614 cc 7751 clt 7933 cmin 8069 crp 9589 cabs 10939 ccncf 13197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-cncf 13198 |
This theorem is referenced by: cncff 13204 cncfi 13205 rescncf 13208 cncffvrn 13209 cncfco 13218 cncfmpt2fcntop 13225 mulcncflem 13230 mulcncf 13231 cnlimci 13282 |
Copyright terms: Public domain | W3C validator |