ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfrss2 Unicode version

Theorem cncfrss2 13956
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss2  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )

Proof of Theorem cncfrss2
Dummy variables  a  b  f  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 13951 . . 3  |-  -cn->  =  ( a  e.  ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
)  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21elmpocl2 6070 . 2  |-  ( F  e.  ( A -cn-> B )  ->  B  e.  ~P CC )
32elpwid 3586 1  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3129   ~Pcpw 3575   class class class wbr 4003   ` cfv 5216  (class class class)co 5874    ^m cmap 6647   CCcc 7808    < clt 7990    - cmin 8126   RR+crp 9651   abscabs 11001   -cn->ccncf 13950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-cncf 13951
This theorem is referenced by:  cncff  13957  cncfi  13958  rescncf  13961  climcncf  13964  cncfco  13971  cnlimci  14035
  Copyright terms: Public domain W3C validator