ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxssxr Unicode version

Theorem ixxssxr 9836
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
Hypothesis
Ref Expression
ixxssxr.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
ixxssxr  |-  ( A O B )  C_  RR*
Distinct variable groups:    x, y, z, R    x, S, y, z    x, A, y, z    x, B, y, z    x, O, y, z

Proof of Theorem ixxssxr
StepHypRef Expression
1 ixxssxr.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elmpocl 6036 . . 3  |-  ( x  e.  ( A O B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
31ixxf 9834 . . . . . 6  |-  O :
( RR*  X.  RR* ) --> ~P RR*
43fovcl 5947 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  e. 
~P RR* )
54elpwid 3570 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  C_  RR* )
65sseld 3141 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A O B )  ->  x  e.  RR* ) )
72, 6mpcom 36 . 2  |-  ( x  e.  ( A O B )  ->  x  e.  RR* )
87ssriv 3146 1  |-  ( A O B )  C_  RR*
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   {crab 2448    C_ wss 3116   ~Pcpw 3559   class class class wbr 3982  (class class class)co 5842    e. cmpo 5844   RR*cxr 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937
This theorem is referenced by:  iccssxr  9892  iocssxr  9893  icossxr  9894
  Copyright terms: Public domain W3C validator