ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxssxr Unicode version

Theorem ixxssxr 9524
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
Hypothesis
Ref Expression
ixxssxr.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
ixxssxr  |-  ( A O B )  C_  RR*
Distinct variable groups:    x, y, z, R    x, S, y, z    x, A, y, z    x, B, y, z    x, O, y, z

Proof of Theorem ixxssxr
StepHypRef Expression
1 ixxssxr.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elmpocl 5900 . . 3  |-  ( x  e.  ( A O B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
31ixxf 9522 . . . . . 6  |-  O :
( RR*  X.  RR* ) --> ~P RR*
43fovcl 5808 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  e. 
~P RR* )
54elpwid 3468 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  C_  RR* )
65sseld 3046 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A O B )  ->  x  e.  RR* ) )
72, 6mpcom 36 . 2  |-  ( x  e.  ( A O B )  ->  x  e.  RR* )
87ssriv 3051 1  |-  ( A O B )  C_  RR*
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1299    e. wcel 1448   {crab 2379    C_ wss 3021   ~Pcpw 3457   class class class wbr 3875  (class class class)co 5706    e. cmpo 5708   RR*cxr 7671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-cnex 7586  ax-resscn 7587
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676
This theorem is referenced by:  iccssxr  9580  iocssxr  9581  icossxr  9582
  Copyright terms: Public domain W3C validator