ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxssxr Unicode version

Theorem ixxssxr 10042
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
Hypothesis
Ref Expression
ixxssxr.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
ixxssxr  |-  ( A O B )  C_  RR*
Distinct variable groups:    x, y, z, R    x, S, y, z    x, A, y, z    x, B, y, z    x, O, y, z

Proof of Theorem ixxssxr
StepHypRef Expression
1 ixxssxr.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elmpocl 6154 . . 3  |-  ( x  e.  ( A O B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
31ixxf 10040 . . . . . 6  |-  O :
( RR*  X.  RR* ) --> ~P RR*
43fovcl 6064 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  e. 
~P RR* )
54elpwid 3632 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  C_  RR* )
65sseld 3196 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A O B )  ->  x  e.  RR* ) )
72, 6mpcom 36 . 2  |-  ( x  e.  ( A O B )  ->  x  e.  RR* )
87ssriv 3201 1  |-  ( A O B )  C_  RR*
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2177   {crab 2489    C_ wss 3170   ~Pcpw 3621   class class class wbr 4051  (class class class)co 5957    e. cmpo 5959   RR*cxr 8126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-xr 8131
This theorem is referenced by:  iccssxr  10098  iocssxr  10099  icossxr  10100
  Copyright terms: Public domain W3C validator