ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxssxr Unicode version

Theorem ixxssxr 9782
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
Hypothesis
Ref Expression
ixxssxr.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
ixxssxr  |-  ( A O B )  C_  RR*
Distinct variable groups:    x, y, z, R    x, S, y, z    x, A, y, z    x, B, y, z    x, O, y, z

Proof of Theorem ixxssxr
StepHypRef Expression
1 ixxssxr.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elmpocl 6008 . . 3  |-  ( x  e.  ( A O B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
31ixxf 9780 . . . . . 6  |-  O :
( RR*  X.  RR* ) --> ~P RR*
43fovcl 5916 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  e. 
~P RR* )
54elpwid 3550 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  C_  RR* )
65sseld 3123 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A O B )  ->  x  e.  RR* ) )
72, 6mpcom 36 . 2  |-  ( x  e.  ( A O B )  ->  x  e.  RR* )
87ssriv 3128 1  |-  ( A O B )  C_  RR*
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1332    e. wcel 2125   {crab 2436    C_ wss 3098   ~Pcpw 3539   class class class wbr 3961  (class class class)co 5814    e. cmpo 5816   RR*cxr 7890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-cnex 7802  ax-resscn 7803
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-pnf 7893  df-mnf 7894  df-xr 7895
This theorem is referenced by:  iccssxr  9838  iocssxr  9839  icossxr  9840
  Copyright terms: Public domain W3C validator