| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoelz | Unicode version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoelz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10302 |
. . . 4
| |
| 2 | elfzoel2 10303 |
. . . 4
| |
| 3 | fzof 10301 |
. . . . 5
| |
| 4 | 3 | fovcl 6074 |
. . . 4
|
| 5 | 1, 2, 4 | syl2anc 411 |
. . 3
|
| 6 | 5 | elpwid 3637 |
. 2
|
| 7 | id 19 |
. 2
| |
| 8 | 6, 7 | sseldd 3202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-fz 10166 df-fzo 10300 |
| This theorem is referenced by: elfzo2 10307 elfzole1 10313 elfzolt2 10314 elfzolt3 10315 elfzolt2b 10316 elfzouz2 10319 fzonnsub 10328 fzospliti 10335 fzodisj 10337 fzodisjsn 10341 fzonmapblen 10348 fzoaddel 10353 elincfzoext 10359 fzosubel 10360 modaddmodup 10569 modaddmodlo 10570 modfzo0difsn 10577 modsumfzodifsn 10578 addmodlteq 10580 iseqf1olemqk 10689 seq3f1olemp 10697 seqfeq4g 10713 ccatcl 11087 ccatlen 11089 ccatval2 11092 ccatval3 11093 ccatvalfn 11095 ccatlid 11100 ccatass 11102 ccatrn 11103 swrdlen 11143 swrdfv 11144 swrdfv0 11145 swrdfv2 11154 swrdwrdsymbg 11155 swrdspsleq 11158 swrds1 11159 ccatswrd 11161 pfxfv 11175 ccatpfx 11192 swrdswrd 11196 pfxccatin12lem2a 11218 swrdccatin2 11220 pfxccatin12lem2 11222 pfxccatin12 11224 fzomaxdiflem 11538 fzomaxdif 11539 fzo0dvdseq 12283 fzocongeq 12284 addmodlteqALT 12285 crth 12661 phimullem 12662 eulerthlem1 12664 eulerthlemfi 12665 eulerthlemrprm 12666 hashgcdlem 12675 hashgcdeq 12677 phisum 12678 reumodprminv 12691 modprm0 12692 nnnn0modprm0 12693 modprmn0modprm0 12694 4sqlemafi 12833 nninfdclemlt 12937 gsumfzfsumlemm 14464 znf1o 14528 trilpolemeq1 16181 |
| Copyright terms: Public domain | W3C validator |