Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzoelz | Unicode version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoelz | ..^ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 10026 | . . . 4 ..^ | |
2 | elfzoel2 10027 | . . . 4 ..^ | |
3 | fzof 10025 | . . . . 5 ..^ | |
4 | 3 | fovcl 5920 | . . . 4 ..^ |
5 | 1, 2, 4 | syl2anc 409 | . . 3 ..^ ..^ |
6 | 5 | elpwid 3554 | . 2 ..^ ..^ |
7 | id 19 | . 2 ..^ ..^ | |
8 | 6, 7 | sseldd 3129 | 1 ..^ |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cpw 3543 (class class class)co 5818 cz 9150 ..^cfzo 10023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-n0 9074 df-z 9151 df-fz 9895 df-fzo 10024 |
This theorem is referenced by: elfzo2 10031 elfzole1 10036 elfzolt2 10037 elfzolt3 10038 elfzolt2b 10039 elfzouz2 10042 fzonnsub 10050 fzospliti 10057 fzodisj 10059 fzonmapblen 10068 fzoaddel 10073 fzosubel 10075 modaddmodup 10268 modaddmodlo 10269 modfzo0difsn 10276 modsumfzodifsn 10277 addmodlteq 10279 iseqf1olemqk 10375 seq3f1olemp 10383 fzomaxdiflem 10994 fzomaxdif 10995 fzo0dvdseq 11730 fzocongeq 11731 addmodlteqALT 11732 crth 12076 phimullem 12077 eulerthlem1 12079 eulerthlemfi 12080 eulerthlemrprm 12081 hashgcdlem 12090 hashgcdeq 12091 phisum 12092 trilpolemeq1 13574 |
Copyright terms: Public domain | W3C validator |