| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoelz | Unicode version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoelz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10269 |
. . . 4
| |
| 2 | elfzoel2 10270 |
. . . 4
| |
| 3 | fzof 10268 |
. . . . 5
| |
| 4 | 3 | fovcl 6053 |
. . . 4
|
| 5 | 1, 2, 4 | syl2anc 411 |
. . 3
|
| 6 | 5 | elpwid 3627 |
. 2
|
| 7 | id 19 |
. 2
| |
| 8 | 6, 7 | sseldd 3194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-fz 10133 df-fzo 10267 |
| This theorem is referenced by: elfzo2 10274 elfzole1 10280 elfzolt2 10281 elfzolt3 10282 elfzolt2b 10283 elfzouz2 10286 fzonnsub 10295 fzospliti 10302 fzodisj 10304 fzonmapblen 10313 fzoaddel 10318 elincfzoext 10324 fzosubel 10325 modaddmodup 10534 modaddmodlo 10535 modfzo0difsn 10542 modsumfzodifsn 10543 addmodlteq 10545 iseqf1olemqk 10654 seq3f1olemp 10662 seqfeq4g 10678 ccatcl 11052 ccatlen 11054 ccatval2 11057 ccatval3 11058 ccatvalfn 11060 ccatlid 11065 ccatass 11067 ccatrn 11068 swrdlen 11108 swrdfv 11109 swrdfv0 11110 swrdfv2 11119 swrdwrdsymbg 11120 swrdspsleq 11123 swrds1 11124 ccatswrd 11126 pfxfv 11138 ccatpfx 11155 fzomaxdiflem 11456 fzomaxdif 11457 fzo0dvdseq 12201 fzocongeq 12202 addmodlteqALT 12203 crth 12579 phimullem 12580 eulerthlem1 12582 eulerthlemfi 12583 eulerthlemrprm 12584 hashgcdlem 12593 hashgcdeq 12595 phisum 12596 reumodprminv 12609 modprm0 12610 nnnn0modprm0 12611 modprmn0modprm0 12612 4sqlemafi 12751 nninfdclemlt 12855 gsumfzfsumlemm 14382 znf1o 14446 trilpolemeq1 16016 |
| Copyright terms: Public domain | W3C validator |