| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoelz | Unicode version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoelz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10237 |
. . . 4
| |
| 2 | elfzoel2 10238 |
. . . 4
| |
| 3 | fzof 10236 |
. . . . 5
| |
| 4 | 3 | fovcl 6032 |
. . . 4
|
| 5 | 1, 2, 4 | syl2anc 411 |
. . 3
|
| 6 | 5 | elpwid 3617 |
. 2
|
| 7 | id 19 |
. 2
| |
| 8 | 6, 7 | sseldd 3185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-fz 10101 df-fzo 10235 |
| This theorem is referenced by: elfzo2 10242 elfzole1 10248 elfzolt2 10249 elfzolt3 10250 elfzolt2b 10251 elfzouz2 10254 fzonnsub 10262 fzospliti 10269 fzodisj 10271 fzonmapblen 10280 fzoaddel 10285 fzosubel 10287 modaddmodup 10496 modaddmodlo 10497 modfzo0difsn 10504 modsumfzodifsn 10505 addmodlteq 10507 iseqf1olemqk 10616 seq3f1olemp 10624 seqfeq4g 10640 fzomaxdiflem 11294 fzomaxdif 11295 fzo0dvdseq 12039 fzocongeq 12040 addmodlteqALT 12041 crth 12417 phimullem 12418 eulerthlem1 12420 eulerthlemfi 12421 eulerthlemrprm 12422 hashgcdlem 12431 hashgcdeq 12433 phisum 12434 reumodprminv 12447 modprm0 12448 nnnn0modprm0 12449 modprmn0modprm0 12450 4sqlemafi 12589 nninfdclemlt 12693 gsumfzfsumlemm 14219 znf1o 14283 trilpolemeq1 15771 |
| Copyright terms: Public domain | W3C validator |