| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoelz | Unicode version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoelz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10341 |
. . . 4
| |
| 2 | elfzoel2 10342 |
. . . 4
| |
| 3 | fzof 10340 |
. . . . 5
| |
| 4 | 3 | fovcl 6110 |
. . . 4
|
| 5 | 1, 2, 4 | syl2anc 411 |
. . 3
|
| 6 | 5 | elpwid 3660 |
. 2
|
| 7 | id 19 |
. 2
| |
| 8 | 6, 7 | sseldd 3225 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-fz 10205 df-fzo 10339 |
| This theorem is referenced by: elfzo2 10346 elfzole1 10352 elfzolt2 10353 elfzolt3 10354 elfzolt2b 10355 elfzouz2 10358 fzonnsub 10367 fzospliti 10374 fzodisj 10376 fzodisjsn 10380 fzonmapblen 10387 fzoaddel 10393 elincfzoext 10399 fzosubel 10400 modaddmodup 10609 modaddmodlo 10610 modfzo0difsn 10617 modsumfzodifsn 10618 addmodlteq 10620 iseqf1olemqk 10729 seq3f1olemp 10737 seqfeq4g 10753 ccatcl 11128 ccatlen 11130 ccatval2 11133 ccatval3 11134 ccatvalfn 11136 ccatlid 11141 ccatass 11143 ccatrn 11144 swrdlen 11184 swrdfv 11185 swrdfv0 11186 swrdfv2 11195 swrdwrdsymbg 11196 swrdspsleq 11199 swrds1 11200 ccatswrd 11202 pfxfv 11216 ccatpfx 11233 swrdswrd 11237 pfxccatin12lem2a 11259 swrdccatin2 11261 pfxccatin12lem2 11263 pfxccatin12 11265 fzomaxdiflem 11623 fzomaxdif 11624 fzo0dvdseq 12368 fzocongeq 12369 addmodlteqALT 12370 crth 12746 phimullem 12747 eulerthlem1 12749 eulerthlemfi 12750 eulerthlemrprm 12751 hashgcdlem 12760 hashgcdeq 12762 phisum 12763 reumodprminv 12776 modprm0 12777 nnnn0modprm0 12778 modprmn0modprm0 12779 4sqlemafi 12918 nninfdclemlt 13022 gsumfzfsumlemm 14551 znf1o 14615 wlk1walkdom 16070 trilpolemeq1 16408 |
| Copyright terms: Public domain | W3C validator |