| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoelz | Unicode version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoelz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10267 |
. . . 4
| |
| 2 | elfzoel2 10268 |
. . . 4
| |
| 3 | fzof 10266 |
. . . . 5
| |
| 4 | 3 | fovcl 6051 |
. . . 4
|
| 5 | 1, 2, 4 | syl2anc 411 |
. . 3
|
| 6 | 5 | elpwid 3627 |
. 2
|
| 7 | id 19 |
. 2
| |
| 8 | 6, 7 | sseldd 3194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-fz 10131 df-fzo 10265 |
| This theorem is referenced by: elfzo2 10272 elfzole1 10278 elfzolt2 10279 elfzolt3 10280 elfzolt2b 10281 elfzouz2 10284 fzonnsub 10293 fzospliti 10300 fzodisj 10302 fzonmapblen 10311 fzoaddel 10316 elincfzoext 10322 fzosubel 10323 modaddmodup 10532 modaddmodlo 10533 modfzo0difsn 10540 modsumfzodifsn 10541 addmodlteq 10543 iseqf1olemqk 10652 seq3f1olemp 10660 seqfeq4g 10676 ccatcl 11049 ccatlen 11051 ccatval2 11054 ccatval3 11055 ccatvalfn 11057 ccatlid 11062 ccatass 11064 ccatrn 11065 swrdlen 11105 swrdfv 11106 swrdfv0 11107 swrdfv2 11116 swrdwrdsymbg 11117 swrdspsleq 11120 swrds1 11121 ccatswrd 11123 fzomaxdiflem 11423 fzomaxdif 11424 fzo0dvdseq 12168 fzocongeq 12169 addmodlteqALT 12170 crth 12546 phimullem 12547 eulerthlem1 12549 eulerthlemfi 12550 eulerthlemrprm 12551 hashgcdlem 12560 hashgcdeq 12562 phisum 12563 reumodprminv 12576 modprm0 12577 nnnn0modprm0 12578 modprmn0modprm0 12579 4sqlemafi 12718 nninfdclemlt 12822 gsumfzfsumlemm 14349 znf1o 14413 trilpolemeq1 15979 |
| Copyright terms: Public domain | W3C validator |