ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subg Unicode version

Theorem 0subg 13650
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
Hypothesis
Ref Expression
0subg.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0subg  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )

Proof of Theorem 0subg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 grpmnd 13454 . . 3  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 0subg.z . . . 4  |-  .0.  =  ( 0g `  G )
320subm 13431 . . 3  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )
41, 3syl 14 . 2  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubMnd `  G
) )
5 eqid 2207 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
62, 5grpinvid 13507 . . . 4  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
7 eqid 2207 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
87, 2grpidcl 13476 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
97, 5grpinvcl 13495 . . . . . 6  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (
( invg `  G ) `  .0.  )  e.  ( Base `  G ) )
108, 9mpdan 421 . . . . 5  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  e.  ( Base `  G ) )
11 elsng 3658 . . . . 5  |-  ( ( ( invg `  G ) `  .0.  )  e.  ( Base `  G )  ->  (
( ( invg `  G ) `  .0.  )  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  =  .0.  )
)
1210, 11syl 14 . . . 4  |-  ( G  e.  Grp  ->  (
( ( invg `  G ) `  .0.  )  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  =  .0.  )
)
136, 12mpbird 167 . . 3  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  e.  {  .0.  } )
14 fveq2 5599 . . . . . 6  |-  ( a  =  .0.  ->  (
( invg `  G ) `  a
)  =  ( ( invg `  G
) `  .0.  )
)
1514eleq1d 2276 . . . . 5  |-  ( a  =  .0.  ->  (
( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
1615ralsng 3683 . . . 4  |-  (  .0. 
e.  ( Base `  G
)  ->  ( A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
178, 16syl 14 . . 3  |-  ( G  e.  Grp  ->  ( A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
1813, 17mpbird 167 . 2  |-  ( G  e.  Grp  ->  A. a  e.  {  .0.  }  (
( invg `  G ) `  a
)  e.  {  .0.  } )
195issubg3 13643 . 2  |-  ( G  e.  Grp  ->  ( {  .0.  }  e.  (SubGrp `  G )  <->  ( {  .0.  }  e.  (SubMnd `  G )  /\  A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  } ) ) )
204, 18, 19mpbir2and 947 1  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   {csn 3643   ` cfv 5290   Basecbs 12947   0gc0g 13203   Mndcmnd 13363  SubMndcsubmnd 13405   Grpcgrp 13447   invgcminusg 13448  SubGrpcsubg 13618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-submnd 13407  df-grp 13450  df-minusg 13451  df-subg 13621
This theorem is referenced by:  0nsg  13665
  Copyright terms: Public domain W3C validator