ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subg Unicode version

Theorem 0subg 13329
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
Hypothesis
Ref Expression
0subg.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0subg  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )

Proof of Theorem 0subg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 grpmnd 13139 . . 3  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 0subg.z . . . 4  |-  .0.  =  ( 0g `  G )
320subm 13116 . . 3  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )
41, 3syl 14 . 2  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubMnd `  G
) )
5 eqid 2196 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
62, 5grpinvid 13192 . . . 4  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
7 eqid 2196 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
87, 2grpidcl 13161 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
97, 5grpinvcl 13180 . . . . . 6  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (
( invg `  G ) `  .0.  )  e.  ( Base `  G ) )
108, 9mpdan 421 . . . . 5  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  e.  ( Base `  G ) )
11 elsng 3637 . . . . 5  |-  ( ( ( invg `  G ) `  .0.  )  e.  ( Base `  G )  ->  (
( ( invg `  G ) `  .0.  )  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  =  .0.  )
)
1210, 11syl 14 . . . 4  |-  ( G  e.  Grp  ->  (
( ( invg `  G ) `  .0.  )  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  =  .0.  )
)
136, 12mpbird 167 . . 3  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  e.  {  .0.  } )
14 fveq2 5558 . . . . . 6  |-  ( a  =  .0.  ->  (
( invg `  G ) `  a
)  =  ( ( invg `  G
) `  .0.  )
)
1514eleq1d 2265 . . . . 5  |-  ( a  =  .0.  ->  (
( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
1615ralsng 3662 . . . 4  |-  (  .0. 
e.  ( Base `  G
)  ->  ( A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
178, 16syl 14 . . 3  |-  ( G  e.  Grp  ->  ( A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
1813, 17mpbird 167 . 2  |-  ( G  e.  Grp  ->  A. a  e.  {  .0.  }  (
( invg `  G ) `  a
)  e.  {  .0.  } )
195issubg3 13322 . 2  |-  ( G  e.  Grp  ->  ( {  .0.  }  e.  (SubGrp `  G )  <->  ( {  .0.  }  e.  (SubMnd `  G )  /\  A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  } ) ) )
204, 18, 19mpbir2and 946 1  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {csn 3622   ` cfv 5258   Basecbs 12678   0gc0g 12927   Mndcmnd 13057  SubMndcsubmnd 13090   Grpcgrp 13132   invgcminusg 13133  SubGrpcsubg 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-submnd 13092  df-grp 13135  df-minusg 13136  df-subg 13300
This theorem is referenced by:  0nsg  13344
  Copyright terms: Public domain W3C validator