ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subg Unicode version

Theorem 0subg 13272
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
Hypothesis
Ref Expression
0subg.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0subg  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )

Proof of Theorem 0subg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 grpmnd 13082 . . 3  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 0subg.z . . . 4  |-  .0.  =  ( 0g `  G )
320subm 13059 . . 3  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )
41, 3syl 14 . 2  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubMnd `  G
) )
5 eqid 2193 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
62, 5grpinvid 13135 . . . 4  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
7 eqid 2193 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
87, 2grpidcl 13104 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
97, 5grpinvcl 13123 . . . . . 6  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (
( invg `  G ) `  .0.  )  e.  ( Base `  G ) )
108, 9mpdan 421 . . . . 5  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  e.  ( Base `  G ) )
11 elsng 3634 . . . . 5  |-  ( ( ( invg `  G ) `  .0.  )  e.  ( Base `  G )  ->  (
( ( invg `  G ) `  .0.  )  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  =  .0.  )
)
1210, 11syl 14 . . . 4  |-  ( G  e.  Grp  ->  (
( ( invg `  G ) `  .0.  )  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  =  .0.  )
)
136, 12mpbird 167 . . 3  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  e.  {  .0.  } )
14 fveq2 5555 . . . . . 6  |-  ( a  =  .0.  ->  (
( invg `  G ) `  a
)  =  ( ( invg `  G
) `  .0.  )
)
1514eleq1d 2262 . . . . 5  |-  ( a  =  .0.  ->  (
( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
1615ralsng 3659 . . . 4  |-  (  .0. 
e.  ( Base `  G
)  ->  ( A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
178, 16syl 14 . . 3  |-  ( G  e.  Grp  ->  ( A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
1813, 17mpbird 167 . 2  |-  ( G  e.  Grp  ->  A. a  e.  {  .0.  }  (
( invg `  G ) `  a
)  e.  {  .0.  } )
195issubg3 13265 . 2  |-  ( G  e.  Grp  ->  ( {  .0.  }  e.  (SubGrp `  G )  <->  ( {  .0.  }  e.  (SubMnd `  G )  /\  A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  } ) ) )
204, 18, 19mpbir2and 946 1  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {csn 3619   ` cfv 5255   Basecbs 12621   0gc0g 12870   Mndcmnd 13000  SubMndcsubmnd 13033   Grpcgrp 13075   invgcminusg 13076  SubGrpcsubg 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-submnd 13035  df-grp 13078  df-minusg 13079  df-subg 13243
This theorem is referenced by:  0nsg  13287
  Copyright terms: Public domain W3C validator