ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subg Unicode version

Theorem 0subg 13269
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
Hypothesis
Ref Expression
0subg.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0subg  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )

Proof of Theorem 0subg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 grpmnd 13079 . . 3  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 0subg.z . . . 4  |-  .0.  =  ( 0g `  G )
320subm 13056 . . 3  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )
41, 3syl 14 . 2  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubMnd `  G
) )
5 eqid 2193 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
62, 5grpinvid 13132 . . . 4  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
7 eqid 2193 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
87, 2grpidcl 13101 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
97, 5grpinvcl 13120 . . . . . 6  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (
( invg `  G ) `  .0.  )  e.  ( Base `  G ) )
108, 9mpdan 421 . . . . 5  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  e.  ( Base `  G ) )
11 elsng 3633 . . . . 5  |-  ( ( ( invg `  G ) `  .0.  )  e.  ( Base `  G )  ->  (
( ( invg `  G ) `  .0.  )  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  =  .0.  )
)
1210, 11syl 14 . . . 4  |-  ( G  e.  Grp  ->  (
( ( invg `  G ) `  .0.  )  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  =  .0.  )
)
136, 12mpbird 167 . . 3  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  e.  {  .0.  } )
14 fveq2 5554 . . . . . 6  |-  ( a  =  .0.  ->  (
( invg `  G ) `  a
)  =  ( ( invg `  G
) `  .0.  )
)
1514eleq1d 2262 . . . . 5  |-  ( a  =  .0.  ->  (
( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
1615ralsng 3658 . . . 4  |-  (  .0. 
e.  ( Base `  G
)  ->  ( A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
178, 16syl 14 . . 3  |-  ( G  e.  Grp  ->  ( A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  }  <-> 
( ( invg `  G ) `  .0.  )  e.  {  .0.  } ) )
1813, 17mpbird 167 . 2  |-  ( G  e.  Grp  ->  A. a  e.  {  .0.  }  (
( invg `  G ) `  a
)  e.  {  .0.  } )
195issubg3 13262 . 2  |-  ( G  e.  Grp  ->  ( {  .0.  }  e.  (SubGrp `  G )  <->  ( {  .0.  }  e.  (SubMnd `  G )  /\  A. a  e.  {  .0.  }  ( ( invg `  G ) `  a
)  e.  {  .0.  } ) ) )
204, 18, 19mpbir2and 946 1  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {csn 3618   ` cfv 5254   Basecbs 12618   0gc0g 12867   Mndcmnd 12997  SubMndcsubmnd 13030   Grpcgrp 13072   invgcminusg 13073  SubGrpcsubg 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-submnd 13032  df-grp 13075  df-minusg 13076  df-subg 13240
This theorem is referenced by:  0nsg  13284
  Copyright terms: Public domain W3C validator