ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nsg Unicode version

Theorem 0nsg 13287
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
0nsg.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0nsg  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G
) )

Proof of Theorem 0nsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nsg.z . . 3  |-  .0.  =  ( 0g `  G )
210subg 13272 . 2  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
3 elsni 3637 . . . . . . . . 9  |-  ( y  e.  {  .0.  }  ->  y  =  .0.  )
43ad2antll 491 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  y  =  .0.  )
54oveq2d 5935 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  G )  .0.  )
)
6 eqid 2193 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2193 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
86, 7, 1grprid 13107 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( x ( +g  `  G )  .0.  )  =  x )
98adantrr 479 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
)  .0.  )  =  x )
105, 9eqtrd 2226 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  =  x )
1110oveq1d 5934 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  =  ( x ( -g `  G ) x ) )
12 eqid 2193 . . . . . . 7  |-  ( -g `  G )  =  (
-g `  G )
136, 1, 12grpsubid 13159 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( x ( -g `  G ) x )  =  .0.  )
1413adantrr 479 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( -g `  G
) x )  =  .0.  )
1511, 14eqtrd 2226 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  =  .0.  )
16 simpl 109 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  G  e.  Grp )
17 simprl 529 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  x  e.  ( Base `  G
) )
186, 1grpidcl 13104 . . . . . . . . 9  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
1918adantr 276 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  .0.  e.  ( Base `  G
) )
204, 19eqeltrd 2270 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  y  e.  ( Base `  G
) )
216, 7, 16, 17, 20grpcld 13089 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
226, 12grpsubcl 13155 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  x  e.  ( Base `  G )
)  ->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  (
Base `  G )
)
2316, 21, 17, 22syl3anc 1249 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  ( Base `  G
) )
24 elsng 3634 . . . . 5  |-  ( ( ( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  ( Base `  G
)  ->  ( (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  }  <->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  =  .0.  ) )
2523, 24syl 14 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  {  .0.  }  <->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x )  =  .0.  ) )
2615, 25mpbird 167 . . 3  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } )
2726ralrimivva 2576 . 2  |-  ( G  e.  Grp  ->  A. x  e.  ( Base `  G
) A. y  e. 
{  .0.  }  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } )
286, 7, 12isnsg3 13280 . 2  |-  ( {  .0.  }  e.  (NrmSGrp `  G )  <->  ( {  .0.  }  e.  (SubGrp `  G )  /\  A. x  e.  ( Base `  G ) A. y  e.  {  .0.  }  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } ) )
292, 27, 28sylanbrc 417 1  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {csn 3619   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Grpcgrp 13075   -gcsg 13077  SubGrpcsubg 13240  NrmSGrpcnsg 13241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-submnd 13035  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-nsg 13244
This theorem is referenced by:  0idnsgd  13289  1nsgtrivd  13292  ghmker  13343
  Copyright terms: Public domain W3C validator