ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nsg Unicode version

Theorem 0nsg 13344
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
0nsg.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0nsg  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G
) )

Proof of Theorem 0nsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nsg.z . . 3  |-  .0.  =  ( 0g `  G )
210subg 13329 . 2  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
3 elsni 3640 . . . . . . . . 9  |-  ( y  e.  {  .0.  }  ->  y  =  .0.  )
43ad2antll 491 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  y  =  .0.  )
54oveq2d 5938 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  G )  .0.  )
)
6 eqid 2196 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2196 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
86, 7, 1grprid 13164 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( x ( +g  `  G )  .0.  )  =  x )
98adantrr 479 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
)  .0.  )  =  x )
105, 9eqtrd 2229 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  =  x )
1110oveq1d 5937 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  =  ( x ( -g `  G ) x ) )
12 eqid 2196 . . . . . . 7  |-  ( -g `  G )  =  (
-g `  G )
136, 1, 12grpsubid 13216 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( x ( -g `  G ) x )  =  .0.  )
1413adantrr 479 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( -g `  G
) x )  =  .0.  )
1511, 14eqtrd 2229 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  =  .0.  )
16 simpl 109 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  G  e.  Grp )
17 simprl 529 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  x  e.  ( Base `  G
) )
186, 1grpidcl 13161 . . . . . . . . 9  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
1918adantr 276 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  .0.  e.  ( Base `  G
) )
204, 19eqeltrd 2273 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  y  e.  ( Base `  G
) )
216, 7, 16, 17, 20grpcld 13146 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
226, 12grpsubcl 13212 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  x  e.  ( Base `  G )
)  ->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  (
Base `  G )
)
2316, 21, 17, 22syl3anc 1249 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  ( Base `  G
) )
24 elsng 3637 . . . . 5  |-  ( ( ( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  ( Base `  G
)  ->  ( (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  }  <->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  =  .0.  ) )
2523, 24syl 14 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  {  .0.  }  <->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x )  =  .0.  ) )
2615, 25mpbird 167 . . 3  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } )
2726ralrimivva 2579 . 2  |-  ( G  e.  Grp  ->  A. x  e.  ( Base `  G
) A. y  e. 
{  .0.  }  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } )
286, 7, 12isnsg3 13337 . 2  |-  ( {  .0.  }  e.  (NrmSGrp `  G )  <->  ( {  .0.  }  e.  (SubGrp `  G )  /\  A. x  e.  ( Base `  G ) A. y  e.  {  .0.  }  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } ) )
292, 27, 28sylanbrc 417 1  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {csn 3622   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   -gcsg 13134  SubGrpcsubg 13297  NrmSGrpcnsg 13298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-submnd 13092  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300  df-nsg 13301
This theorem is referenced by:  0idnsgd  13346  1nsgtrivd  13349  ghmker  13400
  Copyright terms: Public domain W3C validator