ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nsg Unicode version

Theorem 0nsg 13751
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
0nsg.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0nsg  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G
) )

Proof of Theorem 0nsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nsg.z . . 3  |-  .0.  =  ( 0g `  G )
210subg 13736 . 2  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
3 elsni 3684 . . . . . . . . 9  |-  ( y  e.  {  .0.  }  ->  y  =  .0.  )
43ad2antll 491 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  y  =  .0.  )
54oveq2d 6017 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  G )  .0.  )
)
6 eqid 2229 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2229 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
86, 7, 1grprid 13565 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( x ( +g  `  G )  .0.  )  =  x )
98adantrr 479 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
)  .0.  )  =  x )
105, 9eqtrd 2262 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  =  x )
1110oveq1d 6016 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  =  ( x ( -g `  G ) x ) )
12 eqid 2229 . . . . . . 7  |-  ( -g `  G )  =  (
-g `  G )
136, 1, 12grpsubid 13617 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( x ( -g `  G ) x )  =  .0.  )
1413adantrr 479 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( -g `  G
) x )  =  .0.  )
1511, 14eqtrd 2262 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  =  .0.  )
16 simpl 109 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  G  e.  Grp )
17 simprl 529 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  x  e.  ( Base `  G
) )
186, 1grpidcl 13562 . . . . . . . . 9  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
1918adantr 276 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  .0.  e.  ( Base `  G
) )
204, 19eqeltrd 2306 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  y  e.  ( Base `  G
) )
216, 7, 16, 17, 20grpcld 13547 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
226, 12grpsubcl 13613 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  x  e.  ( Base `  G )
)  ->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  (
Base `  G )
)
2316, 21, 17, 22syl3anc 1271 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  ( Base `  G
) )
24 elsng 3681 . . . . 5  |-  ( ( ( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  ( Base `  G
)  ->  ( (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  }  <->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  =  .0.  ) )
2523, 24syl 14 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  {  .0.  }  <->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x )  =  .0.  ) )
2615, 25mpbird 167 . . 3  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } )
2726ralrimivva 2612 . 2  |-  ( G  e.  Grp  ->  A. x  e.  ( Base `  G
) A. y  e. 
{  .0.  }  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } )
286, 7, 12isnsg3 13744 . 2  |-  ( {  .0.  }  e.  (NrmSGrp `  G )  <->  ( {  .0.  }  e.  (SubGrp `  G )  /\  A. x  e.  ( Base `  G ) A. y  e.  {  .0.  }  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } ) )
292, 27, 28sylanbrc 417 1  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   {csn 3666   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Grpcgrp 13533   -gcsg 13535  SubGrpcsubg 13704  NrmSGrpcnsg 13705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-submnd 13493  df-grp 13536  df-minusg 13537  df-sbg 13538  df-subg 13707  df-nsg 13708
This theorem is referenced by:  0idnsgd  13753  1nsgtrivd  13756  ghmker  13807
  Copyright terms: Public domain W3C validator