ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nsg Unicode version

Theorem 0nsg 13079
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
0nsg.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0nsg  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G
) )

Proof of Theorem 0nsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nsg.z . . 3  |-  .0.  =  ( 0g `  G )
210subg 13064 . 2  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
3 elsni 3612 . . . . . . . . 9  |-  ( y  e.  {  .0.  }  ->  y  =  .0.  )
43ad2antll 491 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  y  =  .0.  )
54oveq2d 5893 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  G )  .0.  )
)
6 eqid 2177 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2177 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
86, 7, 1grprid 12912 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( x ( +g  `  G )  .0.  )  =  x )
98adantrr 479 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
)  .0.  )  =  x )
105, 9eqtrd 2210 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  =  x )
1110oveq1d 5892 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  =  ( x ( -g `  G ) x ) )
12 eqid 2177 . . . . . . 7  |-  ( -g `  G )  =  (
-g `  G )
136, 1, 12grpsubid 12959 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( x ( -g `  G ) x )  =  .0.  )
1413adantrr 479 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( -g `  G
) x )  =  .0.  )
1511, 14eqtrd 2210 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  =  .0.  )
16 simpl 109 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  G  e.  Grp )
17 simprl 529 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  x  e.  ( Base `  G
) )
186, 1grpidcl 12909 . . . . . . . . 9  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
1918adantr 276 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  .0.  e.  ( Base `  G
) )
204, 19eqeltrd 2254 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  y  e.  ( Base `  G
) )
216, 7, 16, 17, 20grpcld 12895 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
226, 12grpsubcl 12955 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  x  e.  ( Base `  G )
)  ->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  (
Base `  G )
)
2316, 21, 17, 22syl3anc 1238 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  ( Base `  G
) )
24 elsng 3609 . . . . 5  |-  ( ( ( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  ( Base `  G
)  ->  ( (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  }  <->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  =  .0.  ) )
2523, 24syl 14 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  {  .0.  }  <->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x )  =  .0.  ) )
2615, 25mpbird 167 . . 3  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  {  .0.  } ) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } )
2726ralrimivva 2559 . 2  |-  ( G  e.  Grp  ->  A. x  e.  ( Base `  G
) A. y  e. 
{  .0.  }  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } )
286, 7, 12isnsg3 13072 . 2  |-  ( {  .0.  }  e.  (NrmSGrp `  G )  <->  ( {  .0.  }  e.  (SubGrp `  G )  /\  A. x  e.  ( Base `  G ) A. y  e.  {  .0.  }  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e. 
{  .0.  } ) )
292, 27, 28sylanbrc 417 1  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   {csn 3594   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   0gc0g 12710   Grpcgrp 12882   -gcsg 12884  SubGrpcsubg 13032  NrmSGrpcnsg 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-submnd 12857  df-grp 12885  df-minusg 12886  df-sbg 12887  df-subg 13035  df-nsg 13036
This theorem is referenced by:  0idnsgd  13081  1nsgtrivd  13084
  Copyright terms: Public domain W3C validator