| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltg2b | Unicode version | ||
| Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltg2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg2 14721 |
. 2
| |
| 2 | simpl 109 |
. . . . . . 7
| |
| 3 | 2 | reximi 2627 |
. . . . . 6
|
| 4 | eluni2 3891 |
. . . . . 6
| |
| 5 | 3, 4 | sylibr 134 |
. . . . 5
|
| 6 | 5 | ralimi 2593 |
. . . 4
|
| 7 | dfss3 3213 |
. . . 4
| |
| 8 | 6, 7 | sylibr 134 |
. . 3
|
| 9 | 8 | pm4.71ri 392 |
. 2
|
| 10 | 1, 9 | bitr4di 198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-topgen 13288 |
| This theorem is referenced by: tg2 14728 tgcl 14732 eltop2 14738 tgss2 14747 basgen2 14749 eltx 14927 tgqioo 15223 |
| Copyright terms: Public domain | W3C validator |