ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg2b Unicode version

Theorem eltg2b 14611
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2b  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, V, y

Proof of Theorem eltg2b
StepHypRef Expression
1 eltg2 14610 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
2 simpl 109 . . . . . . 7  |-  ( ( x  e.  y  /\  y  C_  A )  ->  x  e.  y )
32reximi 2604 . . . . . 6  |-  ( E. y  e.  B  ( x  e.  y  /\  y  C_  A )  ->  E. y  e.  B  x  e.  y )
4 eluni2 3863 . . . . . 6  |-  ( x  e.  U. B  <->  E. y  e.  B  x  e.  y )
53, 4sylibr 134 . . . . 5  |-  ( E. y  e.  B  ( x  e.  y  /\  y  C_  A )  ->  x  e.  U. B )
65ralimi 2570 . . . 4  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  ->  A. x  e.  A  x  e.  U. B )
7 dfss3 3186 . . . 4  |-  ( A 
C_  U. B  <->  A. x  e.  A  x  e.  U. B )
86, 7sylibr 134 . . 3  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  ->  A  C_  U. B )
98pm4.71ri 392 . 2  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) )
101, 9bitr4di 198 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2177   A.wral 2485   E.wrex 2486    C_ wss 3170   U.cuni 3859   ` cfv 5285   topGenctg 13171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-topgen 13177
This theorem is referenced by:  tg2  14617  tgcl  14621  eltop2  14627  tgss2  14636  basgen2  14638  eltx  14816  tgqioo  15112
  Copyright terms: Public domain W3C validator