ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg2b Unicode version

Theorem eltg2b 14722
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2b  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, V, y

Proof of Theorem eltg2b
StepHypRef Expression
1 eltg2 14721 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
2 simpl 109 . . . . . . 7  |-  ( ( x  e.  y  /\  y  C_  A )  ->  x  e.  y )
32reximi 2627 . . . . . 6  |-  ( E. y  e.  B  ( x  e.  y  /\  y  C_  A )  ->  E. y  e.  B  x  e.  y )
4 eluni2 3891 . . . . . 6  |-  ( x  e.  U. B  <->  E. y  e.  B  x  e.  y )
53, 4sylibr 134 . . . . 5  |-  ( E. y  e.  B  ( x  e.  y  /\  y  C_  A )  ->  x  e.  U. B )
65ralimi 2593 . . . 4  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  ->  A. x  e.  A  x  e.  U. B )
7 dfss3 3213 . . . 4  |-  ( A 
C_  U. B  <->  A. x  e.  A  x  e.  U. B )
86, 7sylibr 134 . . 3  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  ->  A  C_  U. B )
98pm4.71ri 392 . 2  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) )
101, 9bitr4di 198 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   U.cuni 3887   ` cfv 5317   topGenctg 13282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-topgen 13288
This theorem is referenced by:  tg2  14728  tgcl  14732  eltop2  14738  tgss2  14747  basgen2  14749  eltx  14927  tgqioo  15223
  Copyright terms: Public domain W3C validator