| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltg2b | Unicode version | ||
| Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltg2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg2 14467 |
. 2
| |
| 2 | simpl 109 |
. . . . . . 7
| |
| 3 | 2 | reximi 2602 |
. . . . . 6
|
| 4 | eluni2 3853 |
. . . . . 6
| |
| 5 | 3, 4 | sylibr 134 |
. . . . 5
|
| 6 | 5 | ralimi 2568 |
. . . 4
|
| 7 | dfss3 3181 |
. . . 4
| |
| 8 | 6, 7 | sylibr 134 |
. . 3
|
| 9 | 8 | pm4.71ri 392 |
. 2
|
| 10 | 1, 9 | bitr4di 198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-topgen 13034 |
| This theorem is referenced by: tg2 14474 tgcl 14478 eltop2 14484 tgss2 14493 basgen2 14495 eltx 14673 tgqioo 14969 |
| Copyright terms: Public domain | W3C validator |