ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  encv GIF version

Theorem encv 6724
Description: If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.)
Assertion
Ref Expression
encv (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem encv
StepHypRef Expression
1 relen 6722 . 2 Rel ≈
2 brrelex12 4649 . 2 ((Rel ≈ ∧ 𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
31, 2mpan 422 1 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  Vcvv 2730   class class class wbr 3989  Rel wrel 4616  cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-en 6719
This theorem is referenced by:  bren  6725  en1uniel  6782  cardcl  7158  isnumi  7159  cardval3ex  7162  djuen  7188  ccfunen  7226
  Copyright terms: Public domain W3C validator