ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  encv GIF version

Theorem encv 6712
Description: If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.)
Assertion
Ref Expression
encv (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem encv
StepHypRef Expression
1 relen 6710 . 2 Rel ≈
2 brrelex12 4642 . 2 ((Rel ≈ ∧ 𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
31, 2mpan 421 1 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  Vcvv 2726   class class class wbr 3982  Rel wrel 4609  cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-en 6707
This theorem is referenced by:  bren  6713  en1uniel  6770  cardcl  7137  isnumi  7138  cardval3ex  7141  djuen  7167  ccfunen  7205
  Copyright terms: Public domain W3C validator