ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1uniel Unicode version

Theorem en1uniel 6834
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
en1uniel  |-  ( S 
~~  1o  ->  U. S  e.  S )

Proof of Theorem en1uniel
StepHypRef Expression
1 relen 6774 . . . 4  |-  Rel  ~~
21brrelex1i 4690 . . 3  |-  ( S 
~~  1o  ->  S  e. 
_V )
3 uniexg 4460 . . 3  |-  ( S  e.  _V  ->  U. S  e.  _V )
4 snidg 3639 . . 3  |-  ( U. S  e.  _V  ->  U. S  e.  { U. S } )
52, 3, 43syl 17 . 2  |-  ( S 
~~  1o  ->  U. S  e.  { U. S }
)
6 encv 6776 . . . . 5  |-  ( S 
~~  1o  ->  ( S  e.  _V  /\  1o  e.  _V ) )
76simpld 112 . . . 4  |-  ( S 
~~  1o  ->  S  e. 
_V )
8 en1bg 6830 . . . 4  |-  ( S  e.  _V  ->  ( S  ~~  1o  <->  S  =  { U. S } ) )
97, 8syl 14 . . 3  |-  ( S 
~~  1o  ->  ( S 
~~  1o  <->  S  =  { U. S } ) )
109ibi 176 . 2  |-  ( S 
~~  1o  ->  S  =  { U. S }
)
115, 10eleqtrrd 2269 1  |-  ( S 
~~  1o  ->  U. S  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160   _Vcvv 2752   {csn 3610   U.cuni 3827   class class class wbr 4021   1oc1o 6438    ~~ cen 6768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-id 4314  df-suc 4392  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-1o 6445  df-en 6771
This theorem is referenced by:  en2eleq  7229  en2other2  7230
  Copyright terms: Public domain W3C validator