ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1uniel Unicode version

Theorem en1uniel 6956
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
en1uniel  |-  ( S 
~~  1o  ->  U. S  e.  S )

Proof of Theorem en1uniel
StepHypRef Expression
1 relen 6891 . . . 4  |-  Rel  ~~
21brrelex1i 4762 . . 3  |-  ( S 
~~  1o  ->  S  e. 
_V )
3 uniexg 4530 . . 3  |-  ( S  e.  _V  ->  U. S  e.  _V )
4 snidg 3695 . . 3  |-  ( U. S  e.  _V  ->  U. S  e.  { U. S } )
52, 3, 43syl 17 . 2  |-  ( S 
~~  1o  ->  U. S  e.  { U. S }
)
6 encv 6893 . . . . 5  |-  ( S 
~~  1o  ->  ( S  e.  _V  /\  1o  e.  _V ) )
76simpld 112 . . . 4  |-  ( S 
~~  1o  ->  S  e. 
_V )
8 en1bg 6952 . . . 4  |-  ( S  e.  _V  ->  ( S  ~~  1o  <->  S  =  { U. S } ) )
97, 8syl 14 . . 3  |-  ( S 
~~  1o  ->  ( S 
~~  1o  <->  S  =  { U. S } ) )
109ibi 176 . 2  |-  ( S 
~~  1o  ->  S  =  { U. S }
)
115, 10eleqtrrd 2309 1  |-  ( S 
~~  1o  ->  U. S  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   U.cuni 3888   class class class wbr 4083   1oc1o 6555    ~~ cen 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6562  df-en 6888
This theorem is referenced by:  en1m  6957  en2eleq  7373  en2other2  7374
  Copyright terms: Public domain W3C validator