ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldom Unicode version

Theorem reldom 6646
Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
reldom  |-  Rel  ~<_

Proof of Theorem reldom
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dom 6643 . 2  |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
21relopabi 4672 1  |-  Rel  ~<_
Colors of variables: wff set class
Syntax hints:   E.wex 1469   Rel wrel 4551   -1-1->wf1 5127    ~<_ cdom 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-opab 3997  df-xp 4552  df-rel 4553  df-dom 6643
This theorem is referenced by:  brdomg  6649  brdomi  6650  ctex  6654  domtr  6686  xpdom2  6732  xpdom1g  6734  mapdom1g  6748  isbth  6862  djudom  6985  difinfsn  6992  hashinfom  10555
  Copyright terms: Public domain W3C validator