ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldom Unicode version

Theorem reldom 6790
Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
reldom  |-  Rel  ~<_

Proof of Theorem reldom
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dom 6787 . 2  |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
21relopabi 4781 1  |-  Rel  ~<_
Colors of variables: wff set class
Syntax hints:   E.wex 1503   Rel wrel 4660   -1-1->wf1 5243    ~<_ cdom 6784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4661  df-rel 4662  df-dom 6787
This theorem is referenced by:  brdomg  6793  brdomi  6794  ctex  6798  domtr  6830  xpdom2  6876  xpdom1g  6878  mapdom1g  6894  isbth  7016  djudom  7142  difinfsn  7149  hashinfom  10839
  Copyright terms: Public domain W3C validator