ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldom Unicode version

Theorem reldom 6855
Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
reldom  |-  Rel  ~<_

Proof of Theorem reldom
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dom 6852 . 2  |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
21relopabi 4821 1  |-  Rel  ~<_
Colors of variables: wff set class
Syntax hints:   E.wex 1516   Rel wrel 4698   -1-1->wf1 5287    ~<_ cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-xp 4699  df-rel 4700  df-dom 6852
This theorem is referenced by:  brdomg  6860  brdomi  6861  ctex  6865  domssr  6892  domtr  6900  xpdom2  6951  xpdom1g  6953  mapdom1g  6969  isbth  7095  djudom  7221  difinfsn  7228  hashinfom  10960
  Copyright terms: Public domain W3C validator