ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdva GIF version

Theorem eqbrrdva 4774
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
Hypotheses
Ref Expression
eqbrrdva.1 (𝜑𝐴 ⊆ (𝐶 × 𝐷))
eqbrrdva.2 (𝜑𝐵 ⊆ (𝐶 × 𝐷))
eqbrrdva.3 ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))
Assertion
Ref Expression
eqbrrdva (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem eqbrrdva
StepHypRef Expression
1 eqbrrdva.1 . . . 4 (𝜑𝐴 ⊆ (𝐶 × 𝐷))
2 xpss 4712 . . . 4 (𝐶 × 𝐷) ⊆ (V × V)
31, 2sstrdi 3154 . . 3 (𝜑𝐴 ⊆ (V × V))
4 df-rel 4611 . . 3 (Rel 𝐴𝐴 ⊆ (V × V))
53, 4sylibr 133 . 2 (𝜑 → Rel 𝐴)
6 eqbrrdva.2 . . . 4 (𝜑𝐵 ⊆ (𝐶 × 𝐷))
76, 2sstrdi 3154 . . 3 (𝜑𝐵 ⊆ (V × V))
8 df-rel 4611 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
97, 8sylibr 133 . 2 (𝜑 → Rel 𝐵)
101ssbrd 4025 . . . 4 (𝜑 → (𝑥𝐴𝑦𝑥(𝐶 × 𝐷)𝑦))
11 brxp 4635 . . . 4 (𝑥(𝐶 × 𝐷)𝑦 ↔ (𝑥𝐶𝑦𝐷))
1210, 11syl6ib 160 . . 3 (𝜑 → (𝑥𝐴𝑦 → (𝑥𝐶𝑦𝐷)))
136ssbrd 4025 . . . 4 (𝜑 → (𝑥𝐵𝑦𝑥(𝐶 × 𝐷)𝑦))
1413, 11syl6ib 160 . . 3 (𝜑 → (𝑥𝐵𝑦 → (𝑥𝐶𝑦𝐷)))
15 eqbrrdva.3 . . . 4 ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))
16153expib 1196 . . 3 (𝜑 → ((𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦)))
1712, 14, 16pm5.21ndd 695 . 2 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
185, 9, 17eqbrrdv 4701 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116   class class class wbr 3982   × cxp 4602  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator