ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdva GIF version

Theorem eqbrrdva 4836
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
Hypotheses
Ref Expression
eqbrrdva.1 (𝜑𝐴 ⊆ (𝐶 × 𝐷))
eqbrrdva.2 (𝜑𝐵 ⊆ (𝐶 × 𝐷))
eqbrrdva.3 ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))
Assertion
Ref Expression
eqbrrdva (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem eqbrrdva
StepHypRef Expression
1 eqbrrdva.1 . . . 4 (𝜑𝐴 ⊆ (𝐶 × 𝐷))
2 xpss 4771 . . . 4 (𝐶 × 𝐷) ⊆ (V × V)
31, 2sstrdi 3195 . . 3 (𝜑𝐴 ⊆ (V × V))
4 df-rel 4670 . . 3 (Rel 𝐴𝐴 ⊆ (V × V))
53, 4sylibr 134 . 2 (𝜑 → Rel 𝐴)
6 eqbrrdva.2 . . . 4 (𝜑𝐵 ⊆ (𝐶 × 𝐷))
76, 2sstrdi 3195 . . 3 (𝜑𝐵 ⊆ (V × V))
8 df-rel 4670 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
97, 8sylibr 134 . 2 (𝜑 → Rel 𝐵)
101ssbrd 4076 . . . 4 (𝜑 → (𝑥𝐴𝑦𝑥(𝐶 × 𝐷)𝑦))
11 brxp 4694 . . . 4 (𝑥(𝐶 × 𝐷)𝑦 ↔ (𝑥𝐶𝑦𝐷))
1210, 11imbitrdi 161 . . 3 (𝜑 → (𝑥𝐴𝑦 → (𝑥𝐶𝑦𝐷)))
136ssbrd 4076 . . . 4 (𝜑 → (𝑥𝐵𝑦𝑥(𝐶 × 𝐷)𝑦))
1413, 11imbitrdi 161 . . 3 (𝜑 → (𝑥𝐵𝑦 → (𝑥𝐶𝑦𝐷)))
15 eqbrrdva.3 . . . 4 ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))
16153expib 1208 . . 3 (𝜑 → ((𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦)))
1712, 14, 16pm5.21ndd 706 . 2 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
185, 9, 17eqbrrdv 4760 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157   class class class wbr 4033   × cxp 4661  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator