Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrrdva | GIF version |
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
Ref | Expression |
---|---|
eqbrrdva.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) |
eqbrrdva.2 | ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) |
eqbrrdva.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
Ref | Expression |
---|---|
eqbrrdva | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrrdva.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) | |
2 | xpss 4719 | . . . 4 ⊢ (𝐶 × 𝐷) ⊆ (V × V) | |
3 | 1, 2 | sstrdi 3159 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (V × V)) |
4 | df-rel 4618 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
5 | 3, 4 | sylibr 133 | . 2 ⊢ (𝜑 → Rel 𝐴) |
6 | eqbrrdva.2 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) | |
7 | 6, 2 | sstrdi 3159 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (V × V)) |
8 | df-rel 4618 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
9 | 7, 8 | sylibr 133 | . 2 ⊢ (𝜑 → Rel 𝐵) |
10 | 1 | ssbrd 4032 | . . . 4 ⊢ (𝜑 → (𝑥𝐴𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
11 | brxp 4642 | . . . 4 ⊢ (𝑥(𝐶 × 𝐷)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) | |
12 | 10, 11 | syl6ib 160 | . . 3 ⊢ (𝜑 → (𝑥𝐴𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
13 | 6 | ssbrd 4032 | . . . 4 ⊢ (𝜑 → (𝑥𝐵𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
14 | 13, 11 | syl6ib 160 | . . 3 ⊢ (𝜑 → (𝑥𝐵𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
15 | eqbrrdva.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
16 | 15 | 3expib 1201 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
17 | 12, 14, 16 | pm5.21ndd 700 | . 2 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
18 | 5, 9, 17 | eqbrrdv 4708 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 class class class wbr 3989 × cxp 4609 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |