| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrrdva | GIF version | ||
| Description: Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
| Ref | Expression |
|---|---|
| eqbrrdva.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) |
| eqbrrdva.2 | ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) |
| eqbrrdva.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
| Ref | Expression |
|---|---|
| eqbrrdva | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdva.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) | |
| 2 | xpss 4771 | . . . 4 ⊢ (𝐶 × 𝐷) ⊆ (V × V) | |
| 3 | 1, 2 | sstrdi 3195 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (V × V)) |
| 4 | df-rel 4670 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 5 | 3, 4 | sylibr 134 | . 2 ⊢ (𝜑 → Rel 𝐴) |
| 6 | eqbrrdva.2 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) | |
| 7 | 6, 2 | sstrdi 3195 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (V × V)) |
| 8 | df-rel 4670 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 9 | 7, 8 | sylibr 134 | . 2 ⊢ (𝜑 → Rel 𝐵) |
| 10 | 1 | ssbrd 4076 | . . . 4 ⊢ (𝜑 → (𝑥𝐴𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
| 11 | brxp 4694 | . . . 4 ⊢ (𝑥(𝐶 × 𝐷)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) | |
| 12 | 10, 11 | imbitrdi 161 | . . 3 ⊢ (𝜑 → (𝑥𝐴𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 13 | 6 | ssbrd 4076 | . . . 4 ⊢ (𝜑 → (𝑥𝐵𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
| 14 | 13, 11 | imbitrdi 161 | . . 3 ⊢ (𝜑 → (𝑥𝐵𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 15 | eqbrrdva.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
| 16 | 15 | 3expib 1208 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
| 17 | 12, 14, 16 | pm5.21ndd 706 | . 2 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
| 18 | 5, 9, 17 | eqbrrdv 4760 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 class class class wbr 4033 × cxp 4661 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |