ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfunfv Unicode version

Theorem eqfunfv 5634
Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
Assertion
Ref Expression
eqfunfv  |-  ( ( Fun  F  /\  Fun  G )  ->  ( F  =  G  <->  ( dom  F  =  dom  G  /\  A. x  e.  dom  F ( F `  x )  =  ( G `  x ) ) ) )
Distinct variable groups:    x, F    x, G

Proof of Theorem eqfunfv
StepHypRef Expression
1 funfn 5261 . 2  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 funfn 5261 . 2  |-  ( Fun 
G  <->  G  Fn  dom  G )
3 eqfnfv2 5630 . 2  |-  ( ( F  Fn  dom  F  /\  G  Fn  dom  G )  ->  ( F  =  G  <->  ( dom  F  =  dom  G  /\  A. x  e.  dom  F ( F `  x )  =  ( G `  x ) ) ) )
41, 2, 3syl2anb 291 1  |-  ( ( Fun  F  /\  Fun  G )  ->  ( F  =  G  <->  ( dom  F  =  dom  G  /\  A. x  e.  dom  F ( F `  x )  =  ( G `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2468   dom cdm 4641   Fun wfun 5225    Fn wfn 5226   ` cfv 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fn 5234  df-fv 5239
This theorem is referenced by:  ennnfonelemex  12433
  Copyright terms: Public domain W3C validator