ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfunfv Unicode version

Theorem eqfunfv 5664
Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
Assertion
Ref Expression
eqfunfv  |-  ( ( Fun  F  /\  Fun  G )  ->  ( F  =  G  <->  ( dom  F  =  dom  G  /\  A. x  e.  dom  F ( F `  x )  =  ( G `  x ) ) ) )
Distinct variable groups:    x, F    x, G

Proof of Theorem eqfunfv
StepHypRef Expression
1 funfn 5288 . 2  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 funfn 5288 . 2  |-  ( Fun 
G  <->  G  Fn  dom  G )
3 eqfnfv2 5660 . 2  |-  ( ( F  Fn  dom  F  /\  G  Fn  dom  G )  ->  ( F  =  G  <->  ( dom  F  =  dom  G  /\  A. x  e.  dom  F ( F `  x )  =  ( G `  x ) ) ) )
41, 2, 3syl2anb 291 1  |-  ( ( Fun  F  /\  Fun  G )  ->  ( F  =  G  <->  ( dom  F  =  dom  G  /\  A. x  e.  dom  F ( F `  x )  =  ( G `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2475   dom cdm 4663   Fun wfun 5252    Fn wfn 5253   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  ennnfonelemex  12607
  Copyright terms: Public domain W3C validator