ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst3m Unicode version

Theorem fconst3m 5748
Description: Two ways to express a constant function. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconst3m  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fconst3m
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fconstfvm 5747 . 2  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  B ) ) )
2 fnfun 5325 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
3 fndm 5327 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
4 eqimss2 3222 . . . . 5  |-  ( dom 
F  =  A  ->  A  C_  dom  F )
53, 4syl 14 . . . 4  |-  ( F  Fn  A  ->  A  C_ 
dom  F )
6 funconstss 5647 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y  e.  A  ( F `  y )  =  B  <-> 
A  C_  ( `' F " { B }
) ) )
72, 5, 6syl2anc 411 . . 3  |-  ( F  Fn  A  ->  ( A. y  e.  A  ( F `  y )  =  B  <->  A  C_  ( `' F " { B } ) ) )
87pm5.32i 454 . 2  |-  ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  B )  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) )
91, 8bitrdi 196 1  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363   E.wex 1502    e. wcel 2158   A.wral 2465    C_ wss 3141   {csn 3604   `'ccnv 4637   dom cdm 4638   "cima 4641   Fun wfun 5222    Fn wfn 5223   -->wf 5224   ` cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fo 5234  df-fv 5236
This theorem is referenced by:  fconst4m  5749
  Copyright terms: Public domain W3C validator