ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst3m Unicode version

Theorem fconst3m 5704
Description: Two ways to express a constant function. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconst3m  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fconst3m
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fconstfvm 5703 . 2  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  B ) ) )
2 fnfun 5285 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
3 fndm 5287 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
4 eqimss2 3197 . . . . 5  |-  ( dom 
F  =  A  ->  A  C_  dom  F )
53, 4syl 14 . . . 4  |-  ( F  Fn  A  ->  A  C_ 
dom  F )
6 funconstss 5603 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y  e.  A  ( F `  y )  =  B  <-> 
A  C_  ( `' F " { B }
) ) )
72, 5, 6syl2anc 409 . . 3  |-  ( F  Fn  A  ->  ( A. y  e.  A  ( F `  y )  =  B  <->  A  C_  ( `' F " { B } ) ) )
87pm5.32i 450 . 2  |-  ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  B )  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) )
91, 8bitrdi 195 1  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444    C_ wss 3116   {csn 3576   `'ccnv 4603   dom cdm 4604   "cima 4607   Fun wfun 5182    Fn wfn 5183   -->wf 5184   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by:  fconst4m  5705
  Copyright terms: Public domain W3C validator