ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnioo Unicode version

Theorem unirnioo 9855
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
unirnioo  |-  RR  =  U. ran  (,)

Proof of Theorem unirnioo
StepHypRef Expression
1 ioomax 9830 . . . 4  |-  ( -oo (,) +oo )  =  RR
2 ioof 9853 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 ffn 5312 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
42, 3ax-mp 5 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
5 mnfxr 7913 . . . . 5  |- -oo  e.  RR*
6 pnfxr 7909 . . . . 5  |- +oo  e.  RR*
7 fnovrn 5958 . . . . 5  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\ -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  e.  ran  (,) )
84, 5, 6, 7mp3an 1316 . . . 4  |-  ( -oo (,) +oo )  e.  ran  (,)
91, 8eqeltrri 2228 . . 3  |-  RR  e.  ran  (,)
10 elssuni 3796 . . 3  |-  ( RR  e.  ran  (,)  ->  RR  C_  U. ran  (,) )
119, 10ax-mp 5 . 2  |-  RR  C_  U.
ran  (,)
12 frn 5321 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  ran  (,)  C_  ~P RR )
132, 12ax-mp 5 . . 3  |-  ran  (,)  C_ 
~P RR
14 sspwuni 3929 . . 3  |-  ( ran 
(,)  C_  ~P RR  <->  U. ran  (,)  C_  RR )
1513, 14mpbi 144 . 2  |-  U. ran  (,)  C_  RR
1611, 15eqssi 3140 1  |-  RR  =  U. ran  (,)
Colors of variables: wff set class
Syntax hints:    = wceq 1332    e. wcel 2125    C_ wss 3098   ~Pcpw 3539   U.cuni 3768    X. cxp 4577   ran crn 4580    Fn wfn 5158   -->wf 5159  (class class class)co 5814   RRcr 7710   +oocpnf 7888   -oocmnf 7889   RR*cxr 7890   (,)cioo 9770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-po 4251  df-iso 4252  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-ioo 9774
This theorem is referenced by:  uniretop  12872  tgioo  12893
  Copyright terms: Public domain W3C validator