ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnioo Unicode version

Theorem unirnioo 10005
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
unirnioo  |-  RR  =  U. ran  (,)

Proof of Theorem unirnioo
StepHypRef Expression
1 ioomax 9980 . . . 4  |-  ( -oo (,) +oo )  =  RR
2 ioof 10003 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 ffn 5384 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
42, 3ax-mp 5 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
5 mnfxr 8045 . . . . 5  |- -oo  e.  RR*
6 pnfxr 8041 . . . . 5  |- +oo  e.  RR*
7 fnovrn 6045 . . . . 5  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\ -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  e.  ran  (,) )
84, 5, 6, 7mp3an 1348 . . . 4  |-  ( -oo (,) +oo )  e.  ran  (,)
91, 8eqeltrri 2263 . . 3  |-  RR  e.  ran  (,)
10 elssuni 3852 . . 3  |-  ( RR  e.  ran  (,)  ->  RR  C_  U. ran  (,) )
119, 10ax-mp 5 . 2  |-  RR  C_  U.
ran  (,)
12 frn 5393 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  ran  (,)  C_  ~P RR )
132, 12ax-mp 5 . . 3  |-  ran  (,)  C_ 
~P RR
14 sspwuni 3986 . . 3  |-  ( ran 
(,)  C_  ~P RR  <->  U. ran  (,)  C_  RR )
1513, 14mpbi 145 . 2  |-  U. ran  (,)  C_  RR
1611, 15eqssi 3186 1  |-  RR  =  U. ran  (,)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2160    C_ wss 3144   ~Pcpw 3590   U.cuni 3824    X. cxp 4642   ran crn 4645    Fn wfn 5230   -->wf 5231  (class class class)co 5897   RRcr 7841   +oocpnf 8020   -oocmnf 8021   RR*cxr 8022   (,)cioo 9920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-ioo 9924
This theorem is referenced by:  uniretop  14502  tgioo  14523
  Copyright terms: Public domain W3C validator