ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnioo Unicode version

Theorem unirnioo 10169
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
unirnioo  |-  RR  =  U. ran  (,)

Proof of Theorem unirnioo
StepHypRef Expression
1 ioomax 10144 . . . 4  |-  ( -oo (,) +oo )  =  RR
2 ioof 10167 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 ffn 5473 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
42, 3ax-mp 5 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
5 mnfxr 8203 . . . . 5  |- -oo  e.  RR*
6 pnfxr 8199 . . . . 5  |- +oo  e.  RR*
7 fnovrn 6153 . . . . 5  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\ -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  e.  ran  (,) )
84, 5, 6, 7mp3an 1371 . . . 4  |-  ( -oo (,) +oo )  e.  ran  (,)
91, 8eqeltrri 2303 . . 3  |-  RR  e.  ran  (,)
10 elssuni 3916 . . 3  |-  ( RR  e.  ran  (,)  ->  RR  C_  U. ran  (,) )
119, 10ax-mp 5 . 2  |-  RR  C_  U.
ran  (,)
12 frn 5482 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  ran  (,)  C_  ~P RR )
132, 12ax-mp 5 . . 3  |-  ran  (,)  C_ 
~P RR
14 sspwuni 4050 . . 3  |-  ( ran 
(,)  C_  ~P RR  <->  U. ran  (,)  C_  RR )
1513, 14mpbi 145 . 2  |-  U. ran  (,)  C_  RR
1611, 15eqssi 3240 1  |-  RR  =  U. ran  (,)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200    C_ wss 3197   ~Pcpw 3649   U.cuni 3888    X. cxp 4717   ran crn 4720    Fn wfn 5313   -->wf 5314  (class class class)co 6001   RRcr 7998   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180   (,)cioo 10084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-ioo 10088
This theorem is referenced by:  uniretop  15199  tgioo  15228
  Copyright terms: Public domain W3C validator