ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnioo Unicode version

Theorem unirnioo 10097
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
unirnioo  |-  RR  =  U. ran  (,)

Proof of Theorem unirnioo
StepHypRef Expression
1 ioomax 10072 . . . 4  |-  ( -oo (,) +oo )  =  RR
2 ioof 10095 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 ffn 5427 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
42, 3ax-mp 5 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
5 mnfxr 8131 . . . . 5  |- -oo  e.  RR*
6 pnfxr 8127 . . . . 5  |- +oo  e.  RR*
7 fnovrn 6096 . . . . 5  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\ -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  e.  ran  (,) )
84, 5, 6, 7mp3an 1350 . . . 4  |-  ( -oo (,) +oo )  e.  ran  (,)
91, 8eqeltrri 2279 . . 3  |-  RR  e.  ran  (,)
10 elssuni 3878 . . 3  |-  ( RR  e.  ran  (,)  ->  RR  C_  U. ran  (,) )
119, 10ax-mp 5 . 2  |-  RR  C_  U.
ran  (,)
12 frn 5436 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  ran  (,)  C_  ~P RR )
132, 12ax-mp 5 . . 3  |-  ran  (,)  C_ 
~P RR
14 sspwuni 4012 . . 3  |-  ( ran 
(,)  C_  ~P RR  <->  U. ran  (,)  C_  RR )
1513, 14mpbi 145 . 2  |-  U. ran  (,)  C_  RR
1611, 15eqssi 3209 1  |-  RR  =  U. ran  (,)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176    C_ wss 3166   ~Pcpw 3616   U.cuni 3850    X. cxp 4674   ran crn 4677    Fn wfn 5267   -->wf 5268  (class class class)co 5946   RRcr 7926   +oocpnf 8106   -oocmnf 8107   RR*cxr 8108   (,)cioo 10012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-ioo 10016
This theorem is referenced by:  uniretop  15030  tgioo  15059
  Copyright terms: Public domain W3C validator