ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erex Unicode version

Theorem erex 6644
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erex  |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V ) )

Proof of Theorem erex
StepHypRef Expression
1 erssxp 6643 . . 3  |-  ( R  Er  A  ->  R  C_  ( A  X.  A
) )
2 xpexg 4789 . . . 4  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
32anidms 397 . . 3  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
4 ssexg 4183 . . 3  |-  ( ( R  C_  ( A  X.  A )  /\  ( A  X.  A )  e. 
_V )  ->  R  e.  _V )
51, 3, 4syl2an 289 . 2  |-  ( ( R  Er  A  /\  A  e.  V )  ->  R  e.  _V )
65ex 115 1  |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   _Vcvv 2772    C_ wss 3166    X. cxp 4673    Er wer 6617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-er 6620
This theorem is referenced by:  erexb  6645  qliftlem  6700  qusaddvallemg  13165  qusaddflemg  13166  qusaddval  13167  qusaddf  13168  qusmulval  13169  qusmulf  13170  qusgrp2  13449  eqgen  13563  qusrng  13720  qusring2  13828
  Copyright terms: Public domain W3C validator