ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erex Unicode version

Theorem erex 6419
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erex  |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V ) )

Proof of Theorem erex
StepHypRef Expression
1 erssxp 6418 . . 3  |-  ( R  Er  A  ->  R  C_  ( A  X.  A
) )
2 xpexg 4621 . . . 4  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
32anidms 392 . . 3  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
4 ssexg 4035 . . 3  |-  ( ( R  C_  ( A  X.  A )  /\  ( A  X.  A )  e. 
_V )  ->  R  e.  _V )
51, 3, 4syl2an 285 . 2  |-  ( ( R  Er  A  /\  A  e.  V )  ->  R  e.  _V )
65ex 114 1  |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   _Vcvv 2658    C_ wss 3039    X. cxp 4505    Er wer 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514  df-cnv 4515  df-dm 4517  df-rn 4518  df-er 6395
This theorem is referenced by:  erexb  6420  qliftlem  6473
  Copyright terms: Public domain W3C validator