ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erex Unicode version

Theorem erex 6549
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erex  |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V ) )

Proof of Theorem erex
StepHypRef Expression
1 erssxp 6548 . . 3  |-  ( R  Er  A  ->  R  C_  ( A  X.  A
) )
2 xpexg 4734 . . . 4  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
32anidms 397 . . 3  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
4 ssexg 4137 . . 3  |-  ( ( R  C_  ( A  X.  A )  /\  ( A  X.  A )  e. 
_V )  ->  R  e.  _V )
51, 3, 4syl2an 289 . 2  |-  ( ( R  Er  A  /\  A  e.  V )  ->  R  e.  _V )
65ex 115 1  |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   _Vcvv 2735    C_ wss 3127    X. cxp 4618    Er wer 6522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628  df-dm 4630  df-rn 4631  df-er 6525
This theorem is referenced by:  erexb  6550  qliftlem  6603
  Copyright terms: Public domain W3C validator