ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymb Unicode version

Theorem ensymb 6782
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensymb  |-  ( A 
~~  B  <->  B  ~~  A )

Proof of Theorem ensymb
StepHypRef Expression
1 ener 6781 . . . 4  |-  ~~  Er  _V
21a1i 9 . . 3  |-  ( T. 
->  ~~  Er  _V )
32ersymb 6551 . 2  |-  ( T. 
->  ( A  ~~  B  <->  B 
~~  A ) )
43mptru 1362 1  |-  ( A 
~~  B  <->  B  ~~  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1354   _Vcvv 2739   class class class wbr 4005    Er wer 6534    ~~ cen 6740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-er 6537  df-en 6743
This theorem is referenced by:  ensym  6783  php5  6860  snnen2og  6861  snnen2oprc  6862  phpeqd  6934
  Copyright terms: Public domain W3C validator