ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymb Unicode version

Theorem ensymb 6922
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensymb  |-  ( A 
~~  B  <->  B  ~~  A )

Proof of Theorem ensymb
StepHypRef Expression
1 ener 6921 . . . 4  |-  ~~  Er  _V
21a1i 9 . . 3  |-  ( T. 
->  ~~  Er  _V )
32ersymb 6684 . 2  |-  ( T. 
->  ( A  ~~  B  <->  B 
~~  A ) )
43mptru 1404 1  |-  ( A 
~~  B  <->  B  ~~  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1396   _Vcvv 2799   class class class wbr 4082    Er wer 6667    ~~ cen 6875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-er 6670  df-en 6878
This theorem is referenced by:  ensym  6923  php5  7007  snnen2og  7008  snnen2oprc  7009  phpeqd  7085  ficardon  7349  umgrislfupgrenlem  15913  umgrislfupgrdom  15914
  Copyright terms: Public domain W3C validator