ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymb Unicode version

Theorem ensymb 6497
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensymb  |-  ( A 
~~  B  <->  B  ~~  A )

Proof of Theorem ensymb
StepHypRef Expression
1 ener 6496 . . . 4  |-  ~~  Er  _V
21a1i 9 . . 3  |-  ( T. 
->  ~~  Er  _V )
32ersymb 6306 . 2  |-  ( T. 
->  ( A  ~~  B  <->  B 
~~  A ) )
43mptru 1298 1  |-  ( A 
~~  B  <->  B  ~~  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   T. wtru 1290   _Vcvv 2619   class class class wbr 3845    Er wer 6289    ~~ cen 6455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-er 6292  df-en 6458
This theorem is referenced by:  ensym  6498  php5  6574  snnen2og  6575  snnen2oprc  6576
  Copyright terms: Public domain W3C validator