Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff3im | Unicode version |
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
dff3im |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5355 | . 2 | |
2 | ffun 5340 | . . . . . . . 8 | |
3 | 2 | adantr 274 | . . . . . . 7 |
4 | fdm 5343 | . . . . . . . . 9 | |
5 | 4 | eleq2d 2236 | . . . . . . . 8 |
6 | 5 | biimpar 295 | . . . . . . 7 |
7 | funfvop 5597 | . . . . . . 7 | |
8 | 3, 6, 7 | syl2anc 409 | . . . . . 6 |
9 | df-br 3983 | . . . . . 6 | |
10 | 8, 9 | sylibr 133 | . . . . 5 |
11 | funfvex 5503 | . . . . . . 7 | |
12 | breq2 3986 | . . . . . . . 8 | |
13 | 12 | spcegv 2814 | . . . . . . 7 |
14 | 11, 13 | syl 14 | . . . . . 6 |
15 | 3, 6, 14 | syl2anc 409 | . . . . 5 |
16 | 10, 15 | mpd 13 | . . . 4 |
17 | funmo 5203 | . . . . . 6 | |
18 | 2, 17 | syl 14 | . . . . 5 |
19 | 18 | adantr 274 | . . . 4 |
20 | eu5 2061 | . . . 4 | |
21 | 16, 19, 20 | sylanbrc 414 | . . 3 |
22 | 21 | ralrimiva 2539 | . 2 |
23 | 1, 22 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1480 weu 2014 wmo 2015 wcel 2136 wral 2444 cvv 2726 wss 3116 cop 3579 class class class wbr 3982 cxp 4602 cdm 4604 wfun 5182 wf 5184 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: dff4im 5631 |
Copyright terms: Public domain | W3C validator |