ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff3im Unicode version

Theorem dff3im 5428
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
dff3im  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dff3im
StepHypRef Expression
1 fssxp 5163 . 2  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
2 ffun 5150 . . . . . . . 8  |-  ( F : A --> B  ->  Fun  F )
32adantr 270 . . . . . . 7  |-  ( ( F : A --> B  /\  x  e.  A )  ->  Fun  F )
4 fdm 5152 . . . . . . . . 9  |-  ( F : A --> B  ->  dom  F  =  A )
54eleq2d 2157 . . . . . . . 8  |-  ( F : A --> B  -> 
( x  e.  dom  F  <-> 
x  e.  A ) )
65biimpar 291 . . . . . . 7  |-  ( ( F : A --> B  /\  x  e.  A )  ->  x  e.  dom  F
)
7 funfvop 5395 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
83, 6, 7syl2anc 403 . . . . . 6  |-  ( ( F : A --> B  /\  x  e.  A )  -> 
<. x ,  ( F `
 x ) >.  e.  F )
9 df-br 3838 . . . . . 6  |-  ( x F ( F `  x )  <->  <. x ,  ( F `  x
) >.  e.  F )
108, 9sylibr 132 . . . . 5  |-  ( ( F : A --> B  /\  x  e.  A )  ->  x F ( F `
 x ) )
11 funfvex 5306 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
12 breq2 3841 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
x F y  <->  x F
( F `  x
) ) )
1312spcegv 2707 . . . . . . 7  |-  ( ( F `  x )  e.  _V  ->  (
x F ( F `
 x )  ->  E. y  x F
y ) )
1411, 13syl 14 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( x F ( F `  x )  ->  E. y  x F y ) )
153, 6, 14syl2anc 403 . . . . 5  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( x F ( F `  x )  ->  E. y  x F y ) )
1610, 15mpd 13 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E. y  x F y )
17 funmo 5017 . . . . . 6  |-  ( Fun 
F  ->  E* y  x F y )
182, 17syl 14 . . . . 5  |-  ( F : A --> B  ->  E* y  x F
y )
1918adantr 270 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E* y  x F y )
20 eu5 1995 . . . 4  |-  ( E! y  x F y  <-> 
( E. y  x F y  /\  E* y  x F y ) )
2116, 19, 20sylanbrc 408 . . 3  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E! y  x F y )
2221ralrimiva 2446 . 2  |-  ( F : A --> B  ->  A. x  e.  A  E! y  x F
y )
231, 22jca 300 1  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   E.wex 1426    e. wcel 1438   E!weu 1948   E*wmo 1949   A.wral 2359   _Vcvv 2619    C_ wss 2997   <.cop 3444   class class class wbr 3837    X. cxp 4426   dom cdm 4428   Fun wfun 4996   -->wf 4998   ` cfv 5002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2839  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010
This theorem is referenced by:  dff4im  5429
  Copyright terms: Public domain W3C validator