ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff3im Unicode version

Theorem dff3im 5738
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
dff3im  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dff3im
StepHypRef Expression
1 fssxp 5453 . 2  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
2 ffun 5438 . . . . . . . 8  |-  ( F : A --> B  ->  Fun  F )
32adantr 276 . . . . . . 7  |-  ( ( F : A --> B  /\  x  e.  A )  ->  Fun  F )
4 fdm 5441 . . . . . . . . 9  |-  ( F : A --> B  ->  dom  F  =  A )
54eleq2d 2276 . . . . . . . 8  |-  ( F : A --> B  -> 
( x  e.  dom  F  <-> 
x  e.  A ) )
65biimpar 297 . . . . . . 7  |-  ( ( F : A --> B  /\  x  e.  A )  ->  x  e.  dom  F
)
7 funfvop 5705 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
83, 6, 7syl2anc 411 . . . . . 6  |-  ( ( F : A --> B  /\  x  e.  A )  -> 
<. x ,  ( F `
 x ) >.  e.  F )
9 df-br 4052 . . . . . 6  |-  ( x F ( F `  x )  <->  <. x ,  ( F `  x
) >.  e.  F )
108, 9sylibr 134 . . . . 5  |-  ( ( F : A --> B  /\  x  e.  A )  ->  x F ( F `
 x ) )
11 funfvex 5606 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
12 breq2 4055 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
x F y  <->  x F
( F `  x
) ) )
1312spcegv 2865 . . . . . . 7  |-  ( ( F `  x )  e.  _V  ->  (
x F ( F `
 x )  ->  E. y  x F
y ) )
1411, 13syl 14 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( x F ( F `  x )  ->  E. y  x F y ) )
153, 6, 14syl2anc 411 . . . . 5  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( x F ( F `  x )  ->  E. y  x F y ) )
1610, 15mpd 13 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E. y  x F y )
17 funmo 5295 . . . . . 6  |-  ( Fun 
F  ->  E* y  x F y )
182, 17syl 14 . . . . 5  |-  ( F : A --> B  ->  E* y  x F
y )
1918adantr 276 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E* y  x F y )
20 eu5 2102 . . . 4  |-  ( E! y  x F y  <-> 
( E. y  x F y  /\  E* y  x F y ) )
2116, 19, 20sylanbrc 417 . . 3  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E! y  x F y )
2221ralrimiva 2580 . 2  |-  ( F : A --> B  ->  A. x  e.  A  E! y  x F
y )
231, 22jca 306 1  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1516   E!weu 2055   E*wmo 2056    e. wcel 2177   A.wral 2485   _Vcvv 2773    C_ wss 3170   <.cop 3641   class class class wbr 4051    X. cxp 4681   dom cdm 4683   Fun wfun 5274   -->wf 5276   ` cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288
This theorem is referenced by:  dff4im  5739
  Copyright terms: Public domain W3C validator