Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff3im | Unicode version |
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
dff3im |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5365 | . 2 | |
2 | ffun 5350 | . . . . . . . 8 | |
3 | 2 | adantr 274 | . . . . . . 7 |
4 | fdm 5353 | . . . . . . . . 9 | |
5 | 4 | eleq2d 2240 | . . . . . . . 8 |
6 | 5 | biimpar 295 | . . . . . . 7 |
7 | funfvop 5608 | . . . . . . 7 | |
8 | 3, 6, 7 | syl2anc 409 | . . . . . 6 |
9 | df-br 3990 | . . . . . 6 | |
10 | 8, 9 | sylibr 133 | . . . . 5 |
11 | funfvex 5513 | . . . . . . 7 | |
12 | breq2 3993 | . . . . . . . 8 | |
13 | 12 | spcegv 2818 | . . . . . . 7 |
14 | 11, 13 | syl 14 | . . . . . 6 |
15 | 3, 6, 14 | syl2anc 409 | . . . . 5 |
16 | 10, 15 | mpd 13 | . . . 4 |
17 | funmo 5213 | . . . . . 6 | |
18 | 2, 17 | syl 14 | . . . . 5 |
19 | 18 | adantr 274 | . . . 4 |
20 | eu5 2066 | . . . 4 | |
21 | 16, 19, 20 | sylanbrc 415 | . . 3 |
22 | 21 | ralrimiva 2543 | . 2 |
23 | 1, 22 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1485 weu 2019 wmo 2020 wcel 2141 wral 2448 cvv 2730 wss 3121 cop 3586 class class class wbr 3989 cxp 4609 cdm 4611 wfun 5192 wf 5194 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 |
This theorem is referenced by: dff4im 5642 |
Copyright terms: Public domain | W3C validator |