ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff3im Unicode version

Theorem dff3im 5641
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
dff3im  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dff3im
StepHypRef Expression
1 fssxp 5365 . 2  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
2 ffun 5350 . . . . . . . 8  |-  ( F : A --> B  ->  Fun  F )
32adantr 274 . . . . . . 7  |-  ( ( F : A --> B  /\  x  e.  A )  ->  Fun  F )
4 fdm 5353 . . . . . . . . 9  |-  ( F : A --> B  ->  dom  F  =  A )
54eleq2d 2240 . . . . . . . 8  |-  ( F : A --> B  -> 
( x  e.  dom  F  <-> 
x  e.  A ) )
65biimpar 295 . . . . . . 7  |-  ( ( F : A --> B  /\  x  e.  A )  ->  x  e.  dom  F
)
7 funfvop 5608 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
83, 6, 7syl2anc 409 . . . . . 6  |-  ( ( F : A --> B  /\  x  e.  A )  -> 
<. x ,  ( F `
 x ) >.  e.  F )
9 df-br 3990 . . . . . 6  |-  ( x F ( F `  x )  <->  <. x ,  ( F `  x
) >.  e.  F )
108, 9sylibr 133 . . . . 5  |-  ( ( F : A --> B  /\  x  e.  A )  ->  x F ( F `
 x ) )
11 funfvex 5513 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
12 breq2 3993 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
x F y  <->  x F
( F `  x
) ) )
1312spcegv 2818 . . . . . . 7  |-  ( ( F `  x )  e.  _V  ->  (
x F ( F `
 x )  ->  E. y  x F
y ) )
1411, 13syl 14 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( x F ( F `  x )  ->  E. y  x F y ) )
153, 6, 14syl2anc 409 . . . . 5  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( x F ( F `  x )  ->  E. y  x F y ) )
1610, 15mpd 13 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E. y  x F y )
17 funmo 5213 . . . . . 6  |-  ( Fun 
F  ->  E* y  x F y )
182, 17syl 14 . . . . 5  |-  ( F : A --> B  ->  E* y  x F
y )
1918adantr 274 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E* y  x F y )
20 eu5 2066 . . . 4  |-  ( E! y  x F y  <-> 
( E. y  x F y  /\  E* y  x F y ) )
2116, 19, 20sylanbrc 415 . . 3  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E! y  x F y )
2221ralrimiva 2543 . 2  |-  ( F : A --> B  ->  A. x  e.  A  E! y  x F
y )
231, 22jca 304 1  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1485   E!weu 2019   E*wmo 2020    e. wcel 2141   A.wral 2448   _Vcvv 2730    C_ wss 3121   <.cop 3586   class class class wbr 3989    X. cxp 4609   dom cdm 4611   Fun wfun 5192   -->wf 5194   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by:  dff4im  5642
  Copyright terms: Public domain W3C validator