ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleletr Unicode version

Theorem ltleletr 8041
Description: Transitive law, weaker form of  ( A  < 
B  /\  B  <_  C )  ->  A  <  C. (Contributed by AV, 14-Oct-2018.)
Assertion
Ref Expression
ltleletr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem ltleletr
StepHypRef Expression
1 lttr 8033 . . . . . 6  |-  ( ( C  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( C  <  A  /\  A  <  B )  ->  C  <  B
) )
213coml 1210 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  <  A  /\  A  <  B )  ->  C  <  B
) )
32expcomd 1441 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( C  <  A  ->  C  <  B ) ) )
4 con3 642 . . . 4  |-  ( ( C  <  A  ->  C  <  B )  -> 
( -.  C  < 
B  ->  -.  C  <  A ) )
53, 4syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( -.  C  <  B  ->  -.  C  <  A ) ) )
6 lenlt 8035 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
763adant1 1015 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
8 lenlt 8035 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
983adant2 1016 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
107, 9imbi12d 234 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  <_  C  ->  A  <_  C )  <->  ( -.  C  <  B  ->  -.  C  <  A
) ) )
115, 10sylibrd 169 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( B  <_  C  ->  A  <_  C ) ) )
1211impd 254 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4005   RRcr 7812    < clt 7994    <_ cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-lttrn 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000
This theorem is referenced by:  nn0ge2m1nn  9238  lbzbi  9618  iseqf1olemqk  10496
  Copyright terms: Public domain W3C validator