ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleletr Unicode version

Theorem ltleletr 8103
Description: Transitive law, weaker form of  ( A  < 
B  /\  B  <_  C )  ->  A  <  C. (Contributed by AV, 14-Oct-2018.)
Assertion
Ref Expression
ltleletr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem ltleletr
StepHypRef Expression
1 lttr 8095 . . . . . 6  |-  ( ( C  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( C  <  A  /\  A  <  B )  ->  C  <  B
) )
213coml 1212 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  <  A  /\  A  <  B )  ->  C  <  B
) )
32expcomd 1452 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( C  <  A  ->  C  <  B ) ) )
4 con3 643 . . . 4  |-  ( ( C  <  A  ->  C  <  B )  -> 
( -.  C  < 
B  ->  -.  C  <  A ) )
53, 4syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( -.  C  <  B  ->  -.  C  <  A ) ) )
6 lenlt 8097 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
763adant1 1017 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
8 lenlt 8097 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
983adant2 1018 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
107, 9imbi12d 234 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  <_  C  ->  A  <_  C )  <->  ( -.  C  <  B  ->  -.  C  <  A
) ) )
115, 10sylibrd 169 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( B  <_  C  ->  A  <_  C ) ) )
1211impd 254 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164   class class class wbr 4030   RRcr 7873    < clt 8056    <_ cle 8057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-lttrn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062
This theorem is referenced by:  nn0ge2m1nn  9303  lbzbi  9684  iseqf1olemqk  10581  wrdlenge2n0  10952  gausslemma2dlem3  15220  gausslemma2dlem4  15221
  Copyright terms: Public domain W3C validator