| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ltleletr | Unicode version | ||
| Description: Transitive law, weaker
form of  | 
| Ref | Expression | 
|---|---|
| ltleletr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lttr 8100 | 
. . . . . 6
 | |
| 2 | 1 | 3coml 1212 | 
. . . . 5
 | 
| 3 | 2 | expcomd 1452 | 
. . . 4
 | 
| 4 | con3 643 | 
. . . 4
 | |
| 5 | 3, 4 | syl6 33 | 
. . 3
 | 
| 6 | lenlt 8102 | 
. . . . 5
 | |
| 7 | 6 | 3adant1 1017 | 
. . . 4
 | 
| 8 | lenlt 8102 | 
. . . . 5
 | |
| 9 | 8 | 3adant2 1018 | 
. . . 4
 | 
| 10 | 7, 9 | imbi12d 234 | 
. . 3
 | 
| 11 | 5, 10 | sylibrd 169 | 
. 2
 | 
| 12 | 11 | impd 254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 | 
| This theorem is referenced by: nn0ge2m1nn 9309 lbzbi 9690 iseqf1olemqk 10599 wrdlenge2n0 10970 gausslemma2dlem3 15304 gausslemma2dlem4 15305 | 
| Copyright terms: Public domain | W3C validator |