Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltleletr | Unicode version |
Description: Transitive law, weaker form of . (Contributed by AV, 14-Oct-2018.) |
Ref | Expression |
---|---|
ltleletr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttr 8005 | . . . . . 6 | |
2 | 1 | 3coml 1210 | . . . . 5 |
3 | 2 | expcomd 1439 | . . . 4 |
4 | con3 642 | . . . 4 | |
5 | 3, 4 | syl6 33 | . . 3 |
6 | lenlt 8007 | . . . . 5 | |
7 | 6 | 3adant1 1015 | . . . 4 |
8 | lenlt 8007 | . . . . 5 | |
9 | 8 | 3adant2 1016 | . . . 4 |
10 | 7, 9 | imbi12d 234 | . . 3 |
11 | 5, 10 | sylibrd 169 | . 2 |
12 | 11 | impd 254 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 w3a 978 wcel 2146 class class class wbr 3998 cr 7785 clt 7966 cle 7967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-lttrn 7900 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 |
This theorem is referenced by: nn0ge2m1nn 9207 lbzbi 9587 iseqf1olemqk 10462 |
Copyright terms: Public domain | W3C validator |