ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsqpwdvds Unicode version

Theorem difsqpwdvds 12632
Description: If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difsqpwdvds  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C ^ D )  =  ( ( A ^
2 )  -  ( B ^ 2 ) )  ->  C  ||  (
2  x.  B ) ) )

Proof of Theorem difsqpwdvds
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 9304 . . . . . . 7  |-  ( A  e.  NN0  ->  A  e.  CC )
2 nn0cn 9304 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  CC )
31, 2anim12i 338 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  e.  CC  /\  B  e.  CC ) )
433adant3 1019 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  e.  CC  /\  B  e.  CC ) )
5 subsq 10789 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )
64, 5syl 14 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )
76adantr 276 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( A ^ 2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B ) ) )
87eqeq2d 2216 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C ^ D )  =  ( ( A ^
2 )  -  ( B ^ 2 ) )  <-> 
( C ^ D
)  =  ( ( A  +  B )  x.  ( A  -  B ) ) ) )
9 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  C  e.  Prime )
10 nn0z 9391 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  A  e.  ZZ )
11 nn0z 9391 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  B  e.  ZZ )
1210, 11anim12i 338 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  e.  ZZ  /\  B  e.  ZZ ) )
13 zaddcl 9411 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
1412, 13syl 14 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  ZZ )
15143adant3 1019 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  +  B
)  e.  ZZ )
16 nn0re 9303 . . . . . . . . . . . . 13  |-  ( B  e.  NN0  ->  B  e.  RR )
1716adantl 277 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  RR )
18 1red 8086 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
1  e.  RR )
19 nn0re 9303 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  A  e.  RR )
2019adantr 276 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A  e.  RR )
2117, 18, 20ltaddsub2d 8618 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( B  + 
1 )  <  A  <->  1  <  ( A  -  B ) ) )
22 simpr 110 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  NN0 )
2320, 22, 183jca 1179 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  e.  RR  /\  B  e.  NN0  /\  1  e.  RR )
)
24 difgtsumgt 9441 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  1  e.  RR )  ->  (
1  <  ( A  -  B )  ->  1  <  ( A  +  B
) ) )
2523, 24syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( 1  <  ( A  -  B )  ->  1  <  ( A  +  B ) ) )
2621, 25sylbid 150 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( B  + 
1 )  <  A  ->  1  <  ( A  +  B ) ) )
27263impia 1202 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
1  <  ( A  +  B ) )
28 eluz2b1 9721 . . . . . . . . 9  |-  ( ( A  +  B )  e.  ( ZZ>= `  2
)  <->  ( ( A  +  B )  e.  ZZ  /\  1  < 
( A  +  B
) ) )
2915, 27, 28sylanbrc 417 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  +  B
)  e.  ( ZZ>= ` 
2 ) )
3029adantr 276 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( A  +  B )  e.  (
ZZ>= `  2 ) )
31 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  D  e.  NN0 )
329, 30, 313jca 1179 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  e.  Prime  /\  ( A  +  B )  e.  (
ZZ>= `  2 )  /\  D  e.  NN0 ) )
3332adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( C  e.  Prime  /\  ( A  +  B )  e.  ( ZZ>= `  2 )  /\  D  e.  NN0 ) )
34 zsubcl 9412 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
3513, 34jca 306 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  ZZ  /\  ( A  -  B
)  e.  ZZ ) )
3612, 35syl 14 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  +  B )  e.  ZZ  /\  ( A  -  B
)  e.  ZZ ) )
37363adant3 1019 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( ( A  +  B )  e.  ZZ  /\  ( A  -  B
)  e.  ZZ ) )
38 dvdsmul1 12095 . . . . . . . 8  |-  ( ( ( A  +  B
)  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  ->  ( A  +  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) )
3937, 38syl 14 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  +  B
)  ||  ( ( A  +  B )  x.  ( A  -  B
) ) )
4039ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( A  +  B )  ||  ( ( A  +  B )  x.  ( A  -  B )
) )
41 breq2 4047 . . . . . . 7  |-  ( ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B
) )  ->  (
( A  +  B
)  ||  ( C ^ D )  <->  ( A  +  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) ) )
4241adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  (
( A  +  B
)  ||  ( C ^ D )  <->  ( A  +  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) ) )
4340, 42mpbird 167 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( A  +  B )  ||  ( C ^ D
) )
44 dvdsprmpweqnn 12630 . . . . 5  |-  ( ( C  e.  Prime  /\  ( A  +  B )  e.  ( ZZ>= `  2 )  /\  D  e.  NN0 )  ->  ( ( A  +  B )  ||  ( C ^ D )  ->  E. m  e.  NN  ( A  +  B
)  =  ( C ^ m ) ) )
4533, 43, 44sylc 62 . . . 4  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  E. m  e.  NN  ( A  +  B )  =  ( C ^ m ) )
46 prmz 12404 . . . . . . . . . . 11  |-  ( C  e.  Prime  ->  C  e.  ZZ )
47 iddvdsexp 12097 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  m  e.  NN )  ->  C  ||  ( C ^ m ) )
4846, 47sylan 283 . . . . . . . . . 10  |-  ( ( C  e.  Prime  /\  m  e.  NN )  ->  C  ||  ( C ^ m
) )
49 breq2 4047 . . . . . . . . . 10  |-  ( ( A  +  B )  =  ( C ^
m )  ->  ( C  ||  ( A  +  B )  <->  C  ||  ( C ^ m ) ) )
5048, 49syl5ibrcom 157 . . . . . . . . 9  |-  ( ( C  e.  Prime  /\  m  e.  NN )  ->  (
( A  +  B
)  =  ( C ^ m )  ->  C  ||  ( A  +  B ) ) )
5150rexlimdva 2622 . . . . . . . 8  |-  ( C  e.  Prime  ->  ( E. m  e.  NN  ( A  +  B )  =  ( C ^
m )  ->  C  ||  ( A  +  B
) ) )
5251adantr 276 . . . . . . 7  |-  ( ( C  e.  Prime  /\  D  e.  NN0 )  ->  ( E. m  e.  NN  ( A  +  B
)  =  ( C ^ m )  ->  C  ||  ( A  +  B ) ) )
5352adantl 277 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( E. m  e.  NN  ( A  +  B )  =  ( C ^
m )  ->  C  ||  ( A  +  B
) ) )
5453adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( E. m  e.  NN  ( A  +  B
)  =  ( C ^ m )  ->  C  ||  ( A  +  B ) ) )
5512, 34syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  -  B
)  e.  ZZ )
56553adant3 1019 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  -  B
)  e.  ZZ )
5721biimp3a 1357 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
1  <  ( A  -  B ) )
58 eluz2b1 9721 . . . . . . . . . . 11  |-  ( ( A  -  B )  e.  ( ZZ>= `  2
)  <->  ( ( A  -  B )  e.  ZZ  /\  1  < 
( A  -  B
) ) )
5956, 57, 58sylanbrc 417 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  -  B
)  e.  ( ZZ>= ` 
2 ) )
6059adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( A  -  B )  e.  (
ZZ>= `  2 ) )
619, 60, 313jca 1179 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  e.  Prime  /\  ( A  -  B )  e.  (
ZZ>= `  2 )  /\  D  e.  NN0 ) )
6261adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( C  e.  Prime  /\  ( A  -  B )  e.  ( ZZ>= `  2 )  /\  D  e.  NN0 ) )
63 dvdsmul2 12096 . . . . . . . . . 10  |-  ( ( ( A  +  B
)  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  ->  ( A  -  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) )
6437, 63syl 14 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  -  B
)  ||  ( ( A  +  B )  x.  ( A  -  B
) ) )
6564ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( A  -  B )  ||  ( ( A  +  B )  x.  ( A  -  B )
) )
66 breq2 4047 . . . . . . . . 9  |-  ( ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B
) )  ->  (
( A  -  B
)  ||  ( C ^ D )  <->  ( A  -  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) ) )
6766adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  (
( A  -  B
)  ||  ( C ^ D )  <->  ( A  -  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) ) )
6865, 67mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( A  -  B )  ||  ( C ^ D
) )
69 dvdsprmpweqnn 12630 . . . . . . 7  |-  ( ( C  e.  Prime  /\  ( A  -  B )  e.  ( ZZ>= `  2 )  /\  D  e.  NN0 )  ->  ( ( A  -  B )  ||  ( C ^ D )  ->  E. n  e.  NN  ( A  -  B
)  =  ( C ^ n ) ) )
7062, 68, 69sylc 62 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  E. n  e.  NN  ( A  -  B )  =  ( C ^ n ) )
71 iddvdsexp 12097 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  n  e.  NN )  ->  C  ||  ( C ^ n ) )
7246, 71sylan 283 . . . . . . . . . . . 12  |-  ( ( C  e.  Prime  /\  n  e.  NN )  ->  C  ||  ( C ^ n
) )
73 breq2 4047 . . . . . . . . . . . 12  |-  ( ( A  -  B )  =  ( C ^
n )  ->  ( C  ||  ( A  -  B )  <->  C  ||  ( C ^ n ) ) )
7472, 73syl5ibrcom 157 . . . . . . . . . . 11  |-  ( ( C  e.  Prime  /\  n  e.  NN )  ->  (
( A  -  B
)  =  ( C ^ n )  ->  C  ||  ( A  -  B ) ) )
7574rexlimdva 2622 . . . . . . . . . 10  |-  ( C  e.  Prime  ->  ( E. n  e.  NN  ( A  -  B )  =  ( C ^
n )  ->  C  ||  ( A  -  B
) ) )
7675adantr 276 . . . . . . . . 9  |-  ( ( C  e.  Prime  /\  D  e.  NN0 )  ->  ( E. n  e.  NN  ( A  -  B
)  =  ( C ^ n )  ->  C  ||  ( A  -  B ) ) )
7776adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( E. n  e.  NN  ( A  -  B )  =  ( C ^
n )  ->  C  ||  ( A  -  B
) ) )
7877adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( E. n  e.  NN  ( A  -  B
)  =  ( C ^ n )  ->  C  ||  ( A  -  B ) ) )
7946adantr 276 . . . . . . . . . . . . 13  |-  ( ( C  e.  Prime  /\  D  e.  NN0 )  ->  C  e.  ZZ )
8037, 79anim12ci 339 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  e.  ZZ  /\  ( ( A  +  B )  e.  ZZ  /\  ( A  -  B )  e.  ZZ ) ) )
81 3anass 984 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  ( A  +  B
)  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  <-> 
( C  e.  ZZ  /\  ( ( A  +  B )  e.  ZZ  /\  ( A  -  B
)  e.  ZZ ) ) )
8280, 81sylibr 134 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  e.  ZZ  /\  ( A  +  B )  e.  ZZ  /\  ( A  -  B )  e.  ZZ ) )
83 dvds2sub 12108 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  ( A  +  B
)  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  ->  ( ( C 
||  ( A  +  B )  /\  C  ||  ( A  -  B
) )  ->  C  ||  ( ( A  +  B )  -  ( A  -  B )
) ) )
8482, 83syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C  ||  ( A  +  B )  /\  C  ||  ( A  -  B
) )  ->  C  ||  ( ( A  +  B )  -  ( A  -  B )
) ) )
8513ad2ant1 1020 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  ->  A  e.  CC )
8623ad2ant2 1021 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  ->  B  e.  CC )
8785, 86, 86pnncand 8421 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( ( A  +  B )  -  ( A  -  B )
)  =  ( B  +  B ) )
8822timesd 9279 . . . . . . . . . . . . . . . 16  |-  ( B  e.  NN0  ->  ( 2  x.  B )  =  ( B  +  B
) )
8988eqcomd 2210 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN0  ->  ( B  +  B )  =  ( 2  x.  B
) )
90893ad2ant2 1021 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( B  +  B
)  =  ( 2  x.  B ) )
9187, 90eqtrd 2237 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( ( A  +  B )  -  ( A  -  B )
)  =  ( 2  x.  B ) )
9291breq2d 4055 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( C  ||  (
( A  +  B
)  -  ( A  -  B ) )  <-> 
C  ||  ( 2  x.  B ) ) )
9392biimpd 144 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( C  ||  (
( A  +  B
)  -  ( A  -  B ) )  ->  C  ||  (
2  x.  B ) ) )
9493adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  ||  ( ( A  +  B )  -  ( A  -  B )
)  ->  C  ||  (
2  x.  B ) ) )
9584, 94syld 45 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C  ||  ( A  +  B )  /\  C  ||  ( A  -  B
) )  ->  C  ||  ( 2  x.  B
) ) )
9695expcomd 1460 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  ||  ( A  -  B
)  ->  ( C  ||  ( A  +  B
)  ->  C  ||  (
2  x.  B ) ) ) )
9796adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( C  ||  ( A  -  B )  ->  ( C  ||  ( A  +  B )  ->  C  ||  ( 2  x.  B
) ) ) )
9878, 97syld 45 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( E. n  e.  NN  ( A  -  B
)  =  ( C ^ n )  -> 
( C  ||  ( A  +  B )  ->  C  ||  ( 2  x.  B ) ) ) )
9970, 98mpd 13 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( C  ||  ( A  +  B )  ->  C  ||  ( 2  x.  B
) ) )
10054, 99syld 45 . . . 4  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( E. m  e.  NN  ( A  +  B
)  =  ( C ^ m )  ->  C  ||  ( 2  x.  B ) ) )
10145, 100mpd 13 . . 3  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  C  ||  ( 2  x.  B
) )
102101ex 115 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
)  ->  C  ||  (
2  x.  B ) ) )
1038, 102sylbid 150 1  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C ^ D )  =  ( ( A ^
2 )  -  ( B ^ 2 ) )  ->  C  ||  (
2  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   E.wrex 2484   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   CCcc 7922   RRcr 7923   1c1 7925    + caddc 7927    x. cmul 7929    < clt 8106    - cmin 8242   NNcn 9035   2c2 9086   NN0cn0 9294   ZZcz 9371   ZZ>=cuz 9647   ^cexp 10681    || cdvds 12069   Primecprime 12400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-xnn0 9358  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-dvds 12070  df-gcd 12246  df-prm 12401  df-pc 12579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator