ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsqpwdvds Unicode version

Theorem difsqpwdvds 12776
Description: If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difsqpwdvds  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C ^ D )  =  ( ( A ^
2 )  -  ( B ^ 2 ) )  ->  C  ||  (
2  x.  B ) ) )

Proof of Theorem difsqpwdvds
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 9340 . . . . . . 7  |-  ( A  e.  NN0  ->  A  e.  CC )
2 nn0cn 9340 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  CC )
31, 2anim12i 338 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  e.  CC  /\  B  e.  CC ) )
433adant3 1020 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  e.  CC  /\  B  e.  CC ) )
5 subsq 10828 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )
64, 5syl 14 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )
76adantr 276 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( A ^ 2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B ) ) )
87eqeq2d 2219 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C ^ D )  =  ( ( A ^
2 )  -  ( B ^ 2 ) )  <-> 
( C ^ D
)  =  ( ( A  +  B )  x.  ( A  -  B ) ) ) )
9 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  C  e.  Prime )
10 nn0z 9427 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  A  e.  ZZ )
11 nn0z 9427 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  B  e.  ZZ )
1210, 11anim12i 338 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  e.  ZZ  /\  B  e.  ZZ ) )
13 zaddcl 9447 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
1412, 13syl 14 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  ZZ )
15143adant3 1020 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  +  B
)  e.  ZZ )
16 nn0re 9339 . . . . . . . . . . . . 13  |-  ( B  e.  NN0  ->  B  e.  RR )
1716adantl 277 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  RR )
18 1red 8122 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
1  e.  RR )
19 nn0re 9339 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  A  e.  RR )
2019adantr 276 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A  e.  RR )
2117, 18, 20ltaddsub2d 8654 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( B  + 
1 )  <  A  <->  1  <  ( A  -  B ) ) )
22 simpr 110 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  NN0 )
2320, 22, 183jca 1180 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  e.  RR  /\  B  e.  NN0  /\  1  e.  RR )
)
24 difgtsumgt 9477 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  1  e.  RR )  ->  (
1  <  ( A  -  B )  ->  1  <  ( A  +  B
) ) )
2523, 24syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( 1  <  ( A  -  B )  ->  1  <  ( A  +  B ) ) )
2621, 25sylbid 150 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( B  + 
1 )  <  A  ->  1  <  ( A  +  B ) ) )
27263impia 1203 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
1  <  ( A  +  B ) )
28 eluz2b1 9757 . . . . . . . . 9  |-  ( ( A  +  B )  e.  ( ZZ>= `  2
)  <->  ( ( A  +  B )  e.  ZZ  /\  1  < 
( A  +  B
) ) )
2915, 27, 28sylanbrc 417 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  +  B
)  e.  ( ZZ>= ` 
2 ) )
3029adantr 276 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( A  +  B )  e.  (
ZZ>= `  2 ) )
31 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  D  e.  NN0 )
329, 30, 313jca 1180 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  e.  Prime  /\  ( A  +  B )  e.  (
ZZ>= `  2 )  /\  D  e.  NN0 ) )
3332adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( C  e.  Prime  /\  ( A  +  B )  e.  ( ZZ>= `  2 )  /\  D  e.  NN0 ) )
34 zsubcl 9448 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
3513, 34jca 306 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  ZZ  /\  ( A  -  B
)  e.  ZZ ) )
3612, 35syl 14 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  +  B )  e.  ZZ  /\  ( A  -  B
)  e.  ZZ ) )
37363adant3 1020 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( ( A  +  B )  e.  ZZ  /\  ( A  -  B
)  e.  ZZ ) )
38 dvdsmul1 12239 . . . . . . . 8  |-  ( ( ( A  +  B
)  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  ->  ( A  +  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) )
3937, 38syl 14 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  +  B
)  ||  ( ( A  +  B )  x.  ( A  -  B
) ) )
4039ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( A  +  B )  ||  ( ( A  +  B )  x.  ( A  -  B )
) )
41 breq2 4063 . . . . . . 7  |-  ( ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B
) )  ->  (
( A  +  B
)  ||  ( C ^ D )  <->  ( A  +  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) ) )
4241adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  (
( A  +  B
)  ||  ( C ^ D )  <->  ( A  +  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) ) )
4340, 42mpbird 167 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( A  +  B )  ||  ( C ^ D
) )
44 dvdsprmpweqnn 12774 . . . . 5  |-  ( ( C  e.  Prime  /\  ( A  +  B )  e.  ( ZZ>= `  2 )  /\  D  e.  NN0 )  ->  ( ( A  +  B )  ||  ( C ^ D )  ->  E. m  e.  NN  ( A  +  B
)  =  ( C ^ m ) ) )
4533, 43, 44sylc 62 . . . 4  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  E. m  e.  NN  ( A  +  B )  =  ( C ^ m ) )
46 prmz 12548 . . . . . . . . . . 11  |-  ( C  e.  Prime  ->  C  e.  ZZ )
47 iddvdsexp 12241 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  m  e.  NN )  ->  C  ||  ( C ^ m ) )
4846, 47sylan 283 . . . . . . . . . 10  |-  ( ( C  e.  Prime  /\  m  e.  NN )  ->  C  ||  ( C ^ m
) )
49 breq2 4063 . . . . . . . . . 10  |-  ( ( A  +  B )  =  ( C ^
m )  ->  ( C  ||  ( A  +  B )  <->  C  ||  ( C ^ m ) ) )
5048, 49syl5ibrcom 157 . . . . . . . . 9  |-  ( ( C  e.  Prime  /\  m  e.  NN )  ->  (
( A  +  B
)  =  ( C ^ m )  ->  C  ||  ( A  +  B ) ) )
5150rexlimdva 2625 . . . . . . . 8  |-  ( C  e.  Prime  ->  ( E. m  e.  NN  ( A  +  B )  =  ( C ^
m )  ->  C  ||  ( A  +  B
) ) )
5251adantr 276 . . . . . . 7  |-  ( ( C  e.  Prime  /\  D  e.  NN0 )  ->  ( E. m  e.  NN  ( A  +  B
)  =  ( C ^ m )  ->  C  ||  ( A  +  B ) ) )
5352adantl 277 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( E. m  e.  NN  ( A  +  B )  =  ( C ^
m )  ->  C  ||  ( A  +  B
) ) )
5453adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( E. m  e.  NN  ( A  +  B
)  =  ( C ^ m )  ->  C  ||  ( A  +  B ) ) )
5512, 34syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  -  B
)  e.  ZZ )
56553adant3 1020 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  -  B
)  e.  ZZ )
5721biimp3a 1358 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
1  <  ( A  -  B ) )
58 eluz2b1 9757 . . . . . . . . . . 11  |-  ( ( A  -  B )  e.  ( ZZ>= `  2
)  <->  ( ( A  -  B )  e.  ZZ  /\  1  < 
( A  -  B
) ) )
5956, 57, 58sylanbrc 417 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  -  B
)  e.  ( ZZ>= ` 
2 ) )
6059adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( A  -  B )  e.  (
ZZ>= `  2 ) )
619, 60, 313jca 1180 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  e.  Prime  /\  ( A  -  B )  e.  (
ZZ>= `  2 )  /\  D  e.  NN0 ) )
6261adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( C  e.  Prime  /\  ( A  -  B )  e.  ( ZZ>= `  2 )  /\  D  e.  NN0 ) )
63 dvdsmul2 12240 . . . . . . . . . 10  |-  ( ( ( A  +  B
)  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  ->  ( A  -  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) )
6437, 63syl 14 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( A  -  B
)  ||  ( ( A  +  B )  x.  ( A  -  B
) ) )
6564ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( A  -  B )  ||  ( ( A  +  B )  x.  ( A  -  B )
) )
66 breq2 4063 . . . . . . . . 9  |-  ( ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B
) )  ->  (
( A  -  B
)  ||  ( C ^ D )  <->  ( A  -  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) ) )
6766adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  (
( A  -  B
)  ||  ( C ^ D )  <->  ( A  -  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) ) )
6865, 67mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( A  -  B )  ||  ( C ^ D
) )
69 dvdsprmpweqnn 12774 . . . . . . 7  |-  ( ( C  e.  Prime  /\  ( A  -  B )  e.  ( ZZ>= `  2 )  /\  D  e.  NN0 )  ->  ( ( A  -  B )  ||  ( C ^ D )  ->  E. n  e.  NN  ( A  -  B
)  =  ( C ^ n ) ) )
7062, 68, 69sylc 62 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  E. n  e.  NN  ( A  -  B )  =  ( C ^ n ) )
71 iddvdsexp 12241 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  n  e.  NN )  ->  C  ||  ( C ^ n ) )
7246, 71sylan 283 . . . . . . . . . . . 12  |-  ( ( C  e.  Prime  /\  n  e.  NN )  ->  C  ||  ( C ^ n
) )
73 breq2 4063 . . . . . . . . . . . 12  |-  ( ( A  -  B )  =  ( C ^
n )  ->  ( C  ||  ( A  -  B )  <->  C  ||  ( C ^ n ) ) )
7472, 73syl5ibrcom 157 . . . . . . . . . . 11  |-  ( ( C  e.  Prime  /\  n  e.  NN )  ->  (
( A  -  B
)  =  ( C ^ n )  ->  C  ||  ( A  -  B ) ) )
7574rexlimdva 2625 . . . . . . . . . 10  |-  ( C  e.  Prime  ->  ( E. n  e.  NN  ( A  -  B )  =  ( C ^
n )  ->  C  ||  ( A  -  B
) ) )
7675adantr 276 . . . . . . . . 9  |-  ( ( C  e.  Prime  /\  D  e.  NN0 )  ->  ( E. n  e.  NN  ( A  -  B
)  =  ( C ^ n )  ->  C  ||  ( A  -  B ) ) )
7776adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( E. n  e.  NN  ( A  -  B )  =  ( C ^
n )  ->  C  ||  ( A  -  B
) ) )
7877adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( E. n  e.  NN  ( A  -  B
)  =  ( C ^ n )  ->  C  ||  ( A  -  B ) ) )
7946adantr 276 . . . . . . . . . . . . 13  |-  ( ( C  e.  Prime  /\  D  e.  NN0 )  ->  C  e.  ZZ )
8037, 79anim12ci 339 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  e.  ZZ  /\  ( ( A  +  B )  e.  ZZ  /\  ( A  -  B )  e.  ZZ ) ) )
81 3anass 985 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  ( A  +  B
)  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  <-> 
( C  e.  ZZ  /\  ( ( A  +  B )  e.  ZZ  /\  ( A  -  B
)  e.  ZZ ) ) )
8280, 81sylibr 134 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  e.  ZZ  /\  ( A  +  B )  e.  ZZ  /\  ( A  -  B )  e.  ZZ ) )
83 dvds2sub 12252 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  ( A  +  B
)  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  ->  ( ( C 
||  ( A  +  B )  /\  C  ||  ( A  -  B
) )  ->  C  ||  ( ( A  +  B )  -  ( A  -  B )
) ) )
8482, 83syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C  ||  ( A  +  B )  /\  C  ||  ( A  -  B
) )  ->  C  ||  ( ( A  +  B )  -  ( A  -  B )
) ) )
8513ad2ant1 1021 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  ->  A  e.  CC )
8623ad2ant2 1022 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  ->  B  e.  CC )
8785, 86, 86pnncand 8457 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( ( A  +  B )  -  ( A  -  B )
)  =  ( B  +  B ) )
8822timesd 9315 . . . . . . . . . . . . . . . 16  |-  ( B  e.  NN0  ->  ( 2  x.  B )  =  ( B  +  B
) )
8988eqcomd 2213 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN0  ->  ( B  +  B )  =  ( 2  x.  B
) )
90893ad2ant2 1022 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( B  +  B
)  =  ( 2  x.  B ) )
9187, 90eqtrd 2240 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( ( A  +  B )  -  ( A  -  B )
)  =  ( 2  x.  B ) )
9291breq2d 4071 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( C  ||  (
( A  +  B
)  -  ( A  -  B ) )  <-> 
C  ||  ( 2  x.  B ) ) )
9392biimpd 144 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A )  -> 
( C  ||  (
( A  +  B
)  -  ( A  -  B ) )  ->  C  ||  (
2  x.  B ) ) )
9493adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  ||  ( ( A  +  B )  -  ( A  -  B )
)  ->  C  ||  (
2  x.  B ) ) )
9584, 94syld 45 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C  ||  ( A  +  B )  /\  C  ||  ( A  -  B
) )  ->  C  ||  ( 2  x.  B
) ) )
9695expcomd 1462 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( C  ||  ( A  -  B
)  ->  ( C  ||  ( A  +  B
)  ->  C  ||  (
2  x.  B ) ) ) )
9796adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( C  ||  ( A  -  B )  ->  ( C  ||  ( A  +  B )  ->  C  ||  ( 2  x.  B
) ) ) )
9878, 97syld 45 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( E. n  e.  NN  ( A  -  B
)  =  ( C ^ n )  -> 
( C  ||  ( A  +  B )  ->  C  ||  ( 2  x.  B ) ) ) )
9970, 98mpd 13 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( C  ||  ( A  +  B )  ->  C  ||  ( 2  x.  B
) ) )
10054, 99syld 45 . . . 4  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  ( E. m  e.  NN  ( A  +  B
)  =  ( C ^ m )  ->  C  ||  ( 2  x.  B ) ) )
10145, 100mpd 13 . . 3  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 
/\  ( B  + 
1 )  <  A
)  /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  /\  ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
) )  ->  C  ||  ( 2  x.  B
) )
102101ex 115 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C ^ D )  =  ( ( A  +  B )  x.  ( A  -  B )
)  ->  C  ||  (
2  x.  B ) ) )
1038, 102sylbid 150 1  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1
)  <  A )  /\  ( C  e.  Prime  /\  D  e.  NN0 )
)  ->  ( ( C ^ D )  =  ( ( A ^
2 )  -  ( B ^ 2 ) )  ->  C  ||  (
2  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    - cmin 8278   NNcn 9071   2c2 9122   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ^cexp 10720    || cdvds 12213   Primecprime 12544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-xnn0 9394  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-pc 12723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator