ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemm Unicode version

Theorem recexprlemm 7807
Description:  B is inhabited. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemm  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemm
StepHypRef Expression
1 prop 7658 . . 3  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmu 7661 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  A ) )
3 recclnq 7575 . . . . . . 7  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
4 nsmallnqq 7595 . . . . . . 7  |-  ( ( *Q `  x )  e.  Q.  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
53, 4syl 14 . . . . . 6  |-  ( x  e.  Q.  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
65adantr 276 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
7 recrecnq 7577 . . . . . . . . . . . 12  |-  ( x  e.  Q.  ->  ( *Q `  ( *Q `  x ) )  =  x )
87eleq1d 2298 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  ( 2nd `  A
)  <->  x  e.  ( 2nd `  A ) ) )
98anbi2d 464 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  <->  ( q  <Q  ( *Q `  x
)  /\  x  e.  ( 2nd `  A ) ) ) )
10 breq2 4086 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
q  <Q  y  <->  q  <Q  ( *Q `  x ) ) )
11 fveq2 5626 . . . . . . . . . . . . . 14  |-  ( y  =  ( *Q `  x )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  x ) ) )
1211eleq1d 2298 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  ( 2nd `  A )  <->  ( *Q `  ( *Q `  x
) )  e.  ( 2nd `  A ) ) )
1310, 12anbi12d 473 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  x )  ->  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( q  <Q  ( *Q `  x
)  /\  ( *Q `  ( *Q `  x
) )  e.  ( 2nd `  A ) ) ) )
1413spcegv 2891 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
153, 14syl 14 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
169, 15sylbird 170 . . . . . . . . 9  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  x  e.  ( 2nd `  A ) )  ->  E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) ) )
17 recexpr.1 . . . . . . . . . 10  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1817recexprlemell 7805 . . . . . . . . 9  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
1916, 18imbitrrdi 162 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  x  e.  ( 2nd `  A ) )  -> 
q  e.  ( 1st `  B ) ) )
2019expcomd 1484 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  e.  ( 2nd `  A )  ->  (
q  <Q  ( *Q `  x )  ->  q  e.  ( 1st `  B
) ) ) )
2120imp 124 . . . . . 6  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  -> 
( q  <Q  ( *Q `  x )  -> 
q  e.  ( 1st `  B ) ) )
2221reximdv 2631 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  -> 
( E. q  e. 
Q.  q  <Q  ( *Q `  x )  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) ) )
236, 22mpd 13 . . . 4  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
2423rexlimiva 2643 . . 3  |-  ( E. x  e.  Q.  x  e.  ( 2nd `  A
)  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
251, 2, 243syl 17 . 2  |-  ( A  e.  P.  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
26 prml 7660 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
27 1nq 7549 . . . . . . . 8  |-  1Q  e.  Q.
28 addclnq 7558 . . . . . . . 8  |-  ( ( ( *Q `  x
)  e.  Q.  /\  1Q  e.  Q. )  -> 
( ( *Q `  x )  +Q  1Q )  e.  Q. )
293, 27, 28sylancl 413 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  x
)  +Q  1Q )  e.  Q. )
30 ltaddnq 7590 . . . . . . . 8  |-  ( ( ( *Q `  x
)  e.  Q.  /\  1Q  e.  Q. )  -> 
( *Q `  x
)  <Q  ( ( *Q
`  x )  +Q  1Q ) )
313, 27, 30sylancl 413 . . . . . . 7  |-  ( x  e.  Q.  ->  ( *Q `  x )  <Q 
( ( *Q `  x )  +Q  1Q ) )
32 breq2 4086 . . . . . . . 8  |-  ( r  =  ( ( *Q
`  x )  +Q  1Q )  ->  (
( *Q `  x
)  <Q  r  <->  ( *Q `  x )  <Q  (
( *Q `  x
)  +Q  1Q ) ) )
3332rspcev 2907 . . . . . . 7  |-  ( ( ( ( *Q `  x )  +Q  1Q )  e.  Q.  /\  ( *Q `  x )  <Q 
( ( *Q `  x )  +Q  1Q ) )  ->  E. r  e.  Q.  ( *Q `  x )  <Q  r
)
3429, 31, 33syl2anc 411 . . . . . 6  |-  ( x  e.  Q.  ->  E. r  e.  Q.  ( *Q `  x )  <Q  r
)
3534adantr 276 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  ->  E. r  e.  Q.  ( *Q `  x ) 
<Q  r )
367eleq1d 2298 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
)  <->  x  e.  ( 1st `  A ) ) )
3736anbi2d 464 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  <->  ( ( *Q `  x )  <Q 
r  /\  x  e.  ( 1st `  A ) ) ) )
38 breq1 4085 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
y  <Q  r  <->  ( *Q `  x )  <Q  r
) )
3911eleq1d 2298 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  ( *Q `  x
) )  e.  ( 1st `  A ) ) )
4038, 39anbi12d 473 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  x )  ->  (
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( ( *Q `  x )  <Q 
r  /\  ( *Q `  ( *Q `  x
) )  e.  ( 1st `  A ) ) ) )
4140spcegv 2891 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
423, 41syl 14 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
4337, 42sylbird 170 . . . . . . . . 9  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  x  e.  ( 1st `  A ) )  ->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
4417recexprlemelu 7806 . . . . . . . . 9  |-  ( r  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
4543, 44imbitrrdi 162 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  x  e.  ( 1st `  A ) )  ->  r  e.  ( 2nd `  B ) ) )
4645expcomd 1484 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  e.  ( 1st `  A )  ->  (
( *Q `  x
)  <Q  r  ->  r  e.  ( 2nd `  B
) ) ) )
4746imp 124 . . . . . 6  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  -> 
( ( *Q `  x )  <Q  r  ->  r  e.  ( 2nd `  B ) ) )
4847reximdv 2631 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  -> 
( E. r  e. 
Q.  ( *Q `  x )  <Q  r  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) ) )
4935, 48mpd 13 . . . 4  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
5049rexlimiva 2643 . . 3  |-  ( E. x  e.  Q.  x  e.  ( 1st `  A
)  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
511, 26, 503syl 17 . 2  |-  ( A  e.  P.  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
5225, 51jca 306 1  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509   <.cop 3669   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   1stc1st 6282   2ndc2nd 6283   Q.cnq 7463   1Qc1q 7464    +Q cplq 7465   *Qcrq 7467    <Q cltq 7468   P.cnp 7474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-inp 7649
This theorem is referenced by:  recexprlempr  7815
  Copyright terms: Public domain W3C validator