ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemm Unicode version

Theorem recexprlemm 7737
Description:  B is inhabited. Lemma for recexpr 7751. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemm  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemm
StepHypRef Expression
1 prop 7588 . . 3  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmu 7591 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  A ) )
3 recclnq 7505 . . . . . . 7  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
4 nsmallnqq 7525 . . . . . . 7  |-  ( ( *Q `  x )  e.  Q.  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
53, 4syl 14 . . . . . 6  |-  ( x  e.  Q.  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
65adantr 276 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
7 recrecnq 7507 . . . . . . . . . . . 12  |-  ( x  e.  Q.  ->  ( *Q `  ( *Q `  x ) )  =  x )
87eleq1d 2274 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  ( 2nd `  A
)  <->  x  e.  ( 2nd `  A ) ) )
98anbi2d 464 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  <->  ( q  <Q  ( *Q `  x
)  /\  x  e.  ( 2nd `  A ) ) ) )
10 breq2 4048 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
q  <Q  y  <->  q  <Q  ( *Q `  x ) ) )
11 fveq2 5576 . . . . . . . . . . . . . 14  |-  ( y  =  ( *Q `  x )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  x ) ) )
1211eleq1d 2274 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  ( 2nd `  A )  <->  ( *Q `  ( *Q `  x
) )  e.  ( 2nd `  A ) ) )
1310, 12anbi12d 473 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  x )  ->  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( q  <Q  ( *Q `  x
)  /\  ( *Q `  ( *Q `  x
) )  e.  ( 2nd `  A ) ) ) )
1413spcegv 2861 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
153, 14syl 14 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
169, 15sylbird 170 . . . . . . . . 9  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  x  e.  ( 2nd `  A ) )  ->  E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) ) )
17 recexpr.1 . . . . . . . . . 10  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1817recexprlemell 7735 . . . . . . . . 9  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
1916, 18imbitrrdi 162 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  x  e.  ( 2nd `  A ) )  -> 
q  e.  ( 1st `  B ) ) )
2019expcomd 1461 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  e.  ( 2nd `  A )  ->  (
q  <Q  ( *Q `  x )  ->  q  e.  ( 1st `  B
) ) ) )
2120imp 124 . . . . . 6  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  -> 
( q  <Q  ( *Q `  x )  -> 
q  e.  ( 1st `  B ) ) )
2221reximdv 2607 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  -> 
( E. q  e. 
Q.  q  <Q  ( *Q `  x )  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) ) )
236, 22mpd 13 . . . 4  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
2423rexlimiva 2618 . . 3  |-  ( E. x  e.  Q.  x  e.  ( 2nd `  A
)  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
251, 2, 243syl 17 . 2  |-  ( A  e.  P.  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
26 prml 7590 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
27 1nq 7479 . . . . . . . 8  |-  1Q  e.  Q.
28 addclnq 7488 . . . . . . . 8  |-  ( ( ( *Q `  x
)  e.  Q.  /\  1Q  e.  Q. )  -> 
( ( *Q `  x )  +Q  1Q )  e.  Q. )
293, 27, 28sylancl 413 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  x
)  +Q  1Q )  e.  Q. )
30 ltaddnq 7520 . . . . . . . 8  |-  ( ( ( *Q `  x
)  e.  Q.  /\  1Q  e.  Q. )  -> 
( *Q `  x
)  <Q  ( ( *Q
`  x )  +Q  1Q ) )
313, 27, 30sylancl 413 . . . . . . 7  |-  ( x  e.  Q.  ->  ( *Q `  x )  <Q 
( ( *Q `  x )  +Q  1Q ) )
32 breq2 4048 . . . . . . . 8  |-  ( r  =  ( ( *Q
`  x )  +Q  1Q )  ->  (
( *Q `  x
)  <Q  r  <->  ( *Q `  x )  <Q  (
( *Q `  x
)  +Q  1Q ) ) )
3332rspcev 2877 . . . . . . 7  |-  ( ( ( ( *Q `  x )  +Q  1Q )  e.  Q.  /\  ( *Q `  x )  <Q 
( ( *Q `  x )  +Q  1Q ) )  ->  E. r  e.  Q.  ( *Q `  x )  <Q  r
)
3429, 31, 33syl2anc 411 . . . . . 6  |-  ( x  e.  Q.  ->  E. r  e.  Q.  ( *Q `  x )  <Q  r
)
3534adantr 276 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  ->  E. r  e.  Q.  ( *Q `  x ) 
<Q  r )
367eleq1d 2274 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
)  <->  x  e.  ( 1st `  A ) ) )
3736anbi2d 464 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  <->  ( ( *Q `  x )  <Q 
r  /\  x  e.  ( 1st `  A ) ) ) )
38 breq1 4047 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
y  <Q  r  <->  ( *Q `  x )  <Q  r
) )
3911eleq1d 2274 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  ( *Q `  x
) )  e.  ( 1st `  A ) ) )
4038, 39anbi12d 473 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  x )  ->  (
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( ( *Q `  x )  <Q 
r  /\  ( *Q `  ( *Q `  x
) )  e.  ( 1st `  A ) ) ) )
4140spcegv 2861 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
423, 41syl 14 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
4337, 42sylbird 170 . . . . . . . . 9  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  x  e.  ( 1st `  A ) )  ->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
4417recexprlemelu 7736 . . . . . . . . 9  |-  ( r  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
4543, 44imbitrrdi 162 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  x  e.  ( 1st `  A ) )  ->  r  e.  ( 2nd `  B ) ) )
4645expcomd 1461 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  e.  ( 1st `  A )  ->  (
( *Q `  x
)  <Q  r  ->  r  e.  ( 2nd `  B
) ) ) )
4746imp 124 . . . . . 6  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  -> 
( ( *Q `  x )  <Q  r  ->  r  e.  ( 2nd `  B ) ) )
4847reximdv 2607 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  -> 
( E. r  e. 
Q.  ( *Q `  x )  <Q  r  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) ) )
4935, 48mpd 13 . . . 4  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
5049rexlimiva 2618 . . 3  |-  ( E. x  e.  Q.  x  e.  ( 1st `  A
)  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
511, 26, 503syl 17 . 2  |-  ( A  e.  P.  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
5225, 51jca 306 1  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   E.wrex 2485   <.cop 3636   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393   1Qc1q 7394    +Q cplq 7395   *Qcrq 7397    <Q cltq 7398   P.cnp 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-inp 7579
This theorem is referenced by:  recexprlempr  7745
  Copyright terms: Public domain W3C validator