ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfzo12bi Unicode version

Theorem ssfzo12bi 10295
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
Assertion
Ref Expression
ssfzo12bi  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  <->  ( M  <_  K  /\  L  <_  N
) ) )

Proof of Theorem ssfzo12bi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-3an 982 . . . . 5  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  <->  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  K  <  L ) )
21biimpri 133 . . . 4  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  K  <  L
)  ->  ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L ) )
323adant2 1018 . . 3  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L ) )
4 ssfzo12 10294 . . 3  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) )
53, 4syl 14 . 2  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) )
6 elfzo2 10219 . . . . . 6  |-  ( x  e.  ( K..^ L
)  <->  ( x  e.  ( ZZ>= `  K )  /\  L  e.  ZZ  /\  x  <  L ) )
7 eluz2 9601 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  x  e.  ZZ  /\  K  <_  x ) )
8 simprrl 539 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  M  e.  ZZ )
98adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  M  e.  ZZ )
10 simpll 527 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  x  e.  ZZ )
11 zre 9324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
1312adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  RR )
1413adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  M  e.  RR )
15 zre 9324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( K  e.  ZZ  ->  K  e.  RR )
1615adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  K  e.  RR )
1716adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  K  e.  RR )
1817adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  K  e.  RR )
19 zre 9324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  e.  ZZ  ->  x  e.  RR )
2019adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  x  e.  RR )
21 letr 8104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( M  e.  RR  /\  K  e.  RR  /\  x  e.  RR )  ->  (
( M  <_  K  /\  K  <_  x )  ->  M  <_  x
) )
2214, 18, 20, 21syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( ( M  <_  K  /\  K  <_  x )  ->  M  <_  x ) )
2322imp 124 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  M  <_  x )
249, 10, 233jca 1179 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
2524exp31 364 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  ZZ  ->  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( M  <_  K  /\  K  <_  x
)  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2625com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  ZZ  ->  (
( M  <_  K  /\  K  <_  x )  ->  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2726expdimp 259 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  M  <_  K )  -> 
( K  <_  x  ->  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2827impancom 260 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( M  <_  K  ->  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2928com13 80 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  <_  K  ->  ( ( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
30293adant3 1019 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  ( M  <_  K  ->  (
( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
3130com12 30 . . . . . . . . . . . . . . . . . 18  |-  ( M  <_  K  ->  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
3231adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( M  <_  K  /\  L  <_  N )  -> 
( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
3332impcom 125 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( ( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) )
3433com12 30 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L
)  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) )
3534adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) )
3635imp 124 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
37 eluz2 9601 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
3836, 37sylibr 134 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  x  e.  (
ZZ>= `  M ) )
39 simpl2r 1053 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  N  e.  ZZ )
4039adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  N  e.  ZZ )
4119adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  x  e.  RR )
42 zre 9324 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( L  e.  ZZ  ->  L  e.  RR )
4342ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  L  e.  RR )
44 zre 9324 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  ZZ  ->  N  e.  RR )
4544adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
4645adantl 277 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  RR )
4746adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  N  e.  RR )
48 ltletr 8111 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  RR  /\  L  e.  RR  /\  N  e.  RR )  ->  (
( x  <  L  /\  L  <_  N )  ->  x  <  N
) )
4941, 43, 47, 48syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  ( ( x  < 
L  /\  L  <_  N )  ->  x  <  N ) )
5049ex 115 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( x  e.  ZZ  ->  ( ( x  < 
L  /\  L  <_  N )  ->  x  <  N ) ) )
5150com23 78 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( x  < 
L  /\  L  <_  N )  ->  ( x  e.  ZZ  ->  x  <  N ) ) )
52513adant3 1019 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( x  <  L  /\  L  <_  N )  ->  ( x  e.  ZZ  ->  x  <  N ) ) )
5352expcomd 1452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  ( L  <_  N  ->  (
x  <  L  ->  ( x  e.  ZZ  ->  x  <  N ) ) ) )
5453adantld 278 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( M  <_  K  /\  L  <_  N )  ->  ( x  < 
L  ->  ( x  e.  ZZ  ->  x  <  N ) ) ) )
5554imp 124 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( x  <  L  ->  ( x  e.  ZZ  ->  x  <  N ) ) )
5655com13 80 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  (
x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  <  N ) ) )
5756adantr 276 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L
)  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  <  N ) ) )
5857imp 124 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  <  N ) )
5958imp 124 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  x  <  N
)
60 elfzo2 10219 . . . . . . . . . . . 12  |-  ( x  e.  ( M..^ N
)  <->  ( x  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  x  <  N ) )
6138, 40, 59, 60syl3anbrc 1183 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  x  e.  ( M..^ N ) )
6261exp31 364 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L
)  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) ) )
63623adant1 1017 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  K  <_  x )  ->  (
x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) ) )
647, 63sylbi 121 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  K
)  ->  ( x  <  L  ->  ( (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) ) )
6564imp 124 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  K )  /\  x  <  L )  ->  (
( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) )
66653adant2 1018 . . . . . 6  |-  ( ( x  e.  ( ZZ>= `  K )  /\  L  e.  ZZ  /\  x  < 
L )  ->  (
( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) )
676, 66sylbi 121 . . . . 5  |-  ( x  e.  ( K..^ L
)  ->  ( (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) )
6867com12 30 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( x  e.  ( K..^ L )  ->  x  e.  ( M..^ N ) ) )
6968ssrdv 3186 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( K..^ L ) 
C_  ( M..^ N
) )
7069ex 115 . 2  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( M  <_  K  /\  L  <_  N )  ->  ( K..^ L
)  C_  ( M..^ N ) ) )
715, 70impbid 129 1  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  <->  ( M  <_  K  /\  L  <_  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164    C_ wss 3154   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   RRcr 7873    < clt 8056    <_ cle 8057   ZZcz 9320   ZZ>=cuz 9595  ..^cfzo 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator