ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfzo12bi Unicode version

Theorem ssfzo12bi 9970
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
Assertion
Ref Expression
ssfzo12bi  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  <->  ( M  <_  K  /\  L  <_  N
) ) )

Proof of Theorem ssfzo12bi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-3an 949 . . . . 5  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  <->  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  K  <  L ) )
21biimpri 132 . . . 4  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  K  <  L
)  ->  ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L ) )
323adant2 985 . . 3  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L ) )
4 ssfzo12 9969 . . 3  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) )
53, 4syl 14 . 2  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) )
6 elfzo2 9895 . . . . . 6  |-  ( x  e.  ( K..^ L
)  <->  ( x  e.  ( ZZ>= `  K )  /\  L  e.  ZZ  /\  x  <  L ) )
7 eluz2 9300 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  x  e.  ZZ  /\  K  <_  x ) )
8 simprrl 513 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  M  e.  ZZ )
98adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  M  e.  ZZ )
10 simpll 503 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  x  e.  ZZ )
11 zre 9026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
1312adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  RR )
1413adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  M  e.  RR )
15 zre 9026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( K  e.  ZZ  ->  K  e.  RR )
1615adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  K  e.  RR )
1716adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  K  e.  RR )
1817adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  K  e.  RR )
19 zre 9026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  e.  ZZ  ->  x  e.  RR )
2019adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  x  e.  RR )
21 letr 7815 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( M  e.  RR  /\  K  e.  RR  /\  x  e.  RR )  ->  (
( M  <_  K  /\  K  <_  x )  ->  M  <_  x
) )
2214, 18, 20, 21syl3anc 1201 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( ( M  <_  K  /\  K  <_  x )  ->  M  <_  x ) )
2322imp 123 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  M  <_  x )
249, 10, 233jca 1146 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
2524exp31 361 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  ZZ  ->  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( M  <_  K  /\  K  <_  x
)  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2625com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  ZZ  ->  (
( M  <_  K  /\  K  <_  x )  ->  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2726expdimp 257 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  M  <_  K )  -> 
( K  <_  x  ->  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2827impancom 258 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( M  <_  K  ->  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2928com13 80 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  <_  K  ->  ( ( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
30293adant3 986 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  ( M  <_  K  ->  (
( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
3130com12 30 . . . . . . . . . . . . . . . . . 18  |-  ( M  <_  K  ->  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
3231adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( M  <_  K  /\  L  <_  N )  -> 
( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
3332impcom 124 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( ( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) )
3433com12 30 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L
)  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) )
3534adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) )
3635imp 123 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
37 eluz2 9300 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
3836, 37sylibr 133 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  x  e.  (
ZZ>= `  M ) )
39 simpl2r 1020 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  N  e.  ZZ )
4039adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  N  e.  ZZ )
4119adantl 275 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  x  e.  RR )
42 zre 9026 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( L  e.  ZZ  ->  L  e.  RR )
4342ad3antlr 484 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  L  e.  RR )
44 zre 9026 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  ZZ  ->  N  e.  RR )
4544adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
4645adantl 275 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  RR )
4746adantr 274 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  N  e.  RR )
48 ltletr 7821 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  RR  /\  L  e.  RR  /\  N  e.  RR )  ->  (
( x  <  L  /\  L  <_  N )  ->  x  <  N
) )
4941, 43, 47, 48syl3anc 1201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  ( ( x  < 
L  /\  L  <_  N )  ->  x  <  N ) )
5049ex 114 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( x  e.  ZZ  ->  ( ( x  < 
L  /\  L  <_  N )  ->  x  <  N ) ) )
5150com23 78 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( x  < 
L  /\  L  <_  N )  ->  ( x  e.  ZZ  ->  x  <  N ) ) )
52513adant3 986 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( x  <  L  /\  L  <_  N )  ->  ( x  e.  ZZ  ->  x  <  N ) ) )
5352expcomd 1402 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  ( L  <_  N  ->  (
x  <  L  ->  ( x  e.  ZZ  ->  x  <  N ) ) ) )
5453adantld 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( M  <_  K  /\  L  <_  N )  ->  ( x  < 
L  ->  ( x  e.  ZZ  ->  x  <  N ) ) ) )
5554imp 123 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( x  <  L  ->  ( x  e.  ZZ  ->  x  <  N ) ) )
5655com13 80 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  (
x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  <  N ) ) )
5756adantr 274 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L
)  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  <  N ) ) )
5857imp 123 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  <  N ) )
5958imp 123 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  x  <  N
)
60 elfzo2 9895 . . . . . . . . . . . 12  |-  ( x  e.  ( M..^ N
)  <->  ( x  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  x  <  N ) )
6138, 40, 59, 60syl3anbrc 1150 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  x  e.  ( M..^ N ) )
6261exp31 361 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L
)  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) ) )
63623adant1 984 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  K  <_  x )  ->  (
x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) ) )
647, 63sylbi 120 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  K
)  ->  ( x  <  L  ->  ( (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) ) )
6564imp 123 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  K )  /\  x  <  L )  ->  (
( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) )
66653adant2 985 . . . . . 6  |-  ( ( x  e.  ( ZZ>= `  K )  /\  L  e.  ZZ  /\  x  < 
L )  ->  (
( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) )
676, 66sylbi 120 . . . . 5  |-  ( x  e.  ( K..^ L
)  ->  ( (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) )
6867com12 30 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( x  e.  ( K..^ L )  ->  x  e.  ( M..^ N ) ) )
6968ssrdv 3073 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( K..^ L ) 
C_  ( M..^ N
) )
7069ex 114 . 2  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( M  <_  K  /\  L  <_  N )  ->  ( K..^ L
)  C_  ( M..^ N ) ) )
715, 70impbid 128 1  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  <->  ( M  <_  K  /\  L  <_  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    e. wcel 1465    C_ wss 3041   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   RRcr 7587    < clt 7768    <_ cle 7769   ZZcz 9022   ZZ>=cuz 9294  ..^cfzo 9887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759  df-fzo 9888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator