ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1co Unicode version

Theorem f1co 5543
Description: Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
f1co  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )

Proof of Theorem f1co
StepHypRef Expression
1 df-f1 5323 . . 3  |-  ( F : B -1-1-> C  <->  ( F : B --> C  /\  Fun  `' F ) )
2 df-f1 5323 . . 3  |-  ( G : A -1-1-> B  <->  ( G : A --> B  /\  Fun  `' G ) )
3 fco 5489 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
4 funco 5358 . . . . . . 7  |-  ( ( Fun  `' G  /\  Fun  `' F )  ->  Fun  ( `' G  o.  `' F ) )
5 cnvco 4907 . . . . . . . 8  |-  `' ( F  o.  G )  =  ( `' G  o.  `' F )
65funeqi 5339 . . . . . . 7  |-  ( Fun  `' ( F  o.  G )  <->  Fun  ( `' G  o.  `' F
) )
74, 6sylibr 134 . . . . . 6  |-  ( ( Fun  `' G  /\  Fun  `' F )  ->  Fun  `' ( F  o.  G
) )
87ancoms 268 . . . . 5  |-  ( ( Fun  `' F  /\  Fun  `' G )  ->  Fun  `' ( F  o.  G
) )
93, 8anim12i 338 . . . 4  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  ( Fun  `' F  /\  Fun  `' G ) )  -> 
( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G ) ) )
109an4s 590 . . 3  |-  ( ( ( F : B --> C  /\  Fun  `' F
)  /\  ( G : A --> B  /\  Fun  `' G ) )  -> 
( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G ) ) )
111, 2, 10syl2anb 291 . 2  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G
) ) )
12 df-f1 5323 . 2  |-  ( ( F  o.  G ) : A -1-1-> C  <->  ( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G
) ) )
1311, 12sylibr 134 1  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   `'ccnv 4718    o. ccom 4723   Fun wfun 5312   -->wf 5314   -1-1->wf1 5315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323
This theorem is referenced by:  f1oco  5595  tposf12  6415  domtr  6937  djudom  7260  difinfsn  7267
  Copyright terms: Public domain W3C validator