ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoimaf1o Unicode version

Theorem hmeoimaf1o 14550
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmeoimaf1o.1  |-  G  =  ( x  e.  J  |->  ( F " x
) )
Assertion
Ref Expression
hmeoimaf1o  |-  ( F  e.  ( J Homeo K )  ->  G : J
-1-1-onto-> K )
Distinct variable groups:    x, F    x, J    x, K
Allowed substitution hint:    G( x)

Proof of Theorem hmeoimaf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 hmeoimaf1o.1 . 2  |-  G  =  ( x  e.  J  |->  ( F " x
) )
2 hmeoima 14546 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  x  e.  J )  ->  ( F " x )  e.  K )
3 hmeocn 14541 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
4 cnima 14456 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  y  e.  K )  ->  ( `' F "
y )  e.  J
)
53, 4sylan 283 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  y  e.  K )  ->  ( `' F " y )  e.  J )
6 eqid 2196 . . . . . . 7  |-  U. J  =  U. J
7 eqid 2196 . . . . . . 7  |-  U. K  =  U. K
86, 7hmeof1o 14545 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F : U. J -1-1-onto-> U. K )
98adantr 276 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  F : U. J -1-1-onto-> U. K )
10 f1of1 5503 . . . . 5  |-  ( F : U. J -1-1-onto-> U. K  ->  F : U. J -1-1-> U. K )
119, 10syl 14 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  F : U. J -1-1-> U. K )
12 elssuni 3867 . . . . 5  |-  ( x  e.  J  ->  x  C_ 
U. J )
1312ad2antrl 490 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  x  C_  U. J
)
14 cnvimass 5032 . . . . 5  |-  ( `' F " y ) 
C_  dom  F
15 f1dm 5468 . . . . . 6  |-  ( F : U. J -1-1-> U. K  ->  dom  F  =  U. J )
1611, 15syl 14 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  dom  F  = 
U. J )
1714, 16sseqtrid 3233 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( `' F " y )  C_  U. J )
18 f1imaeq 5822 . . . 4  |-  ( ( F : U. J -1-1-> U. K  /\  ( x 
C_  U. J  /\  ( `' F " y ) 
C_  U. J ) )  ->  ( ( F
" x )  =  ( F " ( `' F " y ) )  <->  x  =  ( `' F " y ) ) )
1911, 13, 17, 18syl12anc 1247 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( ( F " x )  =  ( F " ( `' F " y ) )  <->  x  =  ( `' F " y ) ) )
20 f1ofo 5511 . . . . . . 7  |-  ( F : U. J -1-1-onto-> U. K  ->  F : U. J -onto-> U. K )
219, 20syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  F : U. J -onto-> U. K )
22 elssuni 3867 . . . . . . 7  |-  ( y  e.  K  ->  y  C_ 
U. K )
2322ad2antll 491 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  y  C_  U. K )
24 foimacnv 5522 . . . . . 6  |-  ( ( F : U. J -onto-> U. K  /\  y  C_ 
U. K )  -> 
( F " ( `' F " y ) )  =  y )
2521, 23, 24syl2anc 411 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( F " ( `' F "
y ) )  =  y )
2625eqeq2d 2208 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( ( F " x )  =  ( F " ( `' F " y ) )  <->  ( F "
x )  =  y ) )
27 eqcom 2198 . . . 4  |-  ( ( F " x )  =  y  <->  y  =  ( F " x ) )
2826, 27bitrdi 196 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( ( F " x )  =  ( F " ( `' F " y ) )  <->  y  =  ( F " x ) ) )
2919, 28bitr3d 190 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( x  =  ( `' F " y )  <->  y  =  ( F " x ) ) )
301, 2, 5, 29f1o2d 6128 1  |-  ( F  e.  ( J Homeo K )  ->  G : J
-1-1-onto-> K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    C_ wss 3157   U.cuni 3839    |-> cmpt 4094   `'ccnv 4662   dom cdm 4663   "cima 4666   -1-1->wf1 5255   -onto->wfo 5256   -1-1-onto->wf1o 5257  (class class class)co 5922    Cn ccn 14421   Homeochmeo 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-top 14234  df-topon 14247  df-cn 14424  df-hmeo 14537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator