Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hmeoimaf1o | Unicode version |
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
hmeoimaf1o.1 |
Ref | Expression |
---|---|
hmeoimaf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeoimaf1o.1 | . 2 | |
2 | hmeoima 12681 | . 2 | |
3 | hmeocn 12676 | . . 3 | |
4 | cnima 12591 | . . 3 | |
5 | 3, 4 | sylan 281 | . 2 |
6 | eqid 2157 | . . . . . . 7 | |
7 | eqid 2157 | . . . . . . 7 | |
8 | 6, 7 | hmeof1o 12680 | . . . . . 6 |
9 | 8 | adantr 274 | . . . . 5 |
10 | f1of1 5412 | . . . . 5 | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | elssuni 3800 | . . . . 5 | |
13 | 12 | ad2antrl 482 | . . . 4 |
14 | cnvimass 4948 | . . . . 5 | |
15 | f1dm 5379 | . . . . . 6 | |
16 | 11, 15 | syl 14 | . . . . 5 |
17 | 14, 16 | sseqtrid 3178 | . . . 4 |
18 | f1imaeq 5722 | . . . 4 | |
19 | 11, 13, 17, 18 | syl12anc 1218 | . . 3 |
20 | f1ofo 5420 | . . . . . . 7 | |
21 | 9, 20 | syl 14 | . . . . . 6 |
22 | elssuni 3800 | . . . . . . 7 | |
23 | 22 | ad2antll 483 | . . . . . 6 |
24 | foimacnv 5431 | . . . . . 6 | |
25 | 21, 23, 24 | syl2anc 409 | . . . . 5 |
26 | 25 | eqeq2d 2169 | . . . 4 |
27 | eqcom 2159 | . . . 4 | |
28 | 26, 27 | bitrdi 195 | . . 3 |
29 | 19, 28 | bitr3d 189 | . 2 |
30 | 1, 2, 5, 29 | f1o2d 6022 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wss 3102 cuni 3772 cmpt 4025 ccnv 4584 cdm 4585 cima 4588 wf1 5166 wfo 5167 wf1o 5168 (class class class)co 5821 ccn 12556 chmeo 12671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-map 6592 df-top 12367 df-topon 12380 df-cn 12559 df-hmeo 12672 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |