ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoimaf1o Unicode version

Theorem hmeoimaf1o 12685
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmeoimaf1o.1  |-  G  =  ( x  e.  J  |->  ( F " x
) )
Assertion
Ref Expression
hmeoimaf1o  |-  ( F  e.  ( J Homeo K )  ->  G : J
-1-1-onto-> K )
Distinct variable groups:    x, F    x, J    x, K
Allowed substitution hint:    G( x)

Proof of Theorem hmeoimaf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 hmeoimaf1o.1 . 2  |-  G  =  ( x  e.  J  |->  ( F " x
) )
2 hmeoima 12681 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  x  e.  J )  ->  ( F " x )  e.  K )
3 hmeocn 12676 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
4 cnima 12591 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  y  e.  K )  ->  ( `' F "
y )  e.  J
)
53, 4sylan 281 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  y  e.  K )  ->  ( `' F " y )  e.  J )
6 eqid 2157 . . . . . . 7  |-  U. J  =  U. J
7 eqid 2157 . . . . . . 7  |-  U. K  =  U. K
86, 7hmeof1o 12680 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F : U. J -1-1-onto-> U. K )
98adantr 274 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  F : U. J -1-1-onto-> U. K )
10 f1of1 5412 . . . . 5  |-  ( F : U. J -1-1-onto-> U. K  ->  F : U. J -1-1-> U. K )
119, 10syl 14 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  F : U. J -1-1-> U. K )
12 elssuni 3800 . . . . 5  |-  ( x  e.  J  ->  x  C_ 
U. J )
1312ad2antrl 482 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  x  C_  U. J
)
14 cnvimass 4948 . . . . 5  |-  ( `' F " y ) 
C_  dom  F
15 f1dm 5379 . . . . . 6  |-  ( F : U. J -1-1-> U. K  ->  dom  F  =  U. J )
1611, 15syl 14 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  dom  F  = 
U. J )
1714, 16sseqtrid 3178 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( `' F " y )  C_  U. J )
18 f1imaeq 5722 . . . 4  |-  ( ( F : U. J -1-1-> U. K  /\  ( x 
C_  U. J  /\  ( `' F " y ) 
C_  U. J ) )  ->  ( ( F
" x )  =  ( F " ( `' F " y ) )  <->  x  =  ( `' F " y ) ) )
1911, 13, 17, 18syl12anc 1218 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( ( F " x )  =  ( F " ( `' F " y ) )  <->  x  =  ( `' F " y ) ) )
20 f1ofo 5420 . . . . . . 7  |-  ( F : U. J -1-1-onto-> U. K  ->  F : U. J -onto-> U. K )
219, 20syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  F : U. J -onto-> U. K )
22 elssuni 3800 . . . . . . 7  |-  ( y  e.  K  ->  y  C_ 
U. K )
2322ad2antll 483 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  y  C_  U. K )
24 foimacnv 5431 . . . . . 6  |-  ( ( F : U. J -onto-> U. K  /\  y  C_ 
U. K )  -> 
( F " ( `' F " y ) )  =  y )
2521, 23, 24syl2anc 409 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( F " ( `' F "
y ) )  =  y )
2625eqeq2d 2169 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( ( F " x )  =  ( F " ( `' F " y ) )  <->  ( F "
x )  =  y ) )
27 eqcom 2159 . . . 4  |-  ( ( F " x )  =  y  <->  y  =  ( F " x ) )
2826, 27bitrdi 195 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( ( F " x )  =  ( F " ( `' F " y ) )  <->  y  =  ( F " x ) ) )
2919, 28bitr3d 189 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( x  =  ( `' F " y )  <->  y  =  ( F " x ) ) )
301, 2, 5, 29f1o2d 6022 1  |-  ( F  e.  ( J Homeo K )  ->  G : J
-1-1-onto-> K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128    C_ wss 3102   U.cuni 3772    |-> cmpt 4025   `'ccnv 4584   dom cdm 4585   "cima 4588   -1-1->wf1 5166   -onto->wfo 5167   -1-1-onto->wf1o 5168  (class class class)co 5821    Cn ccn 12556   Homeochmeo 12671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-map 6592  df-top 12367  df-topon 12380  df-cn 12559  df-hmeo 12672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator