ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1veqaeq Unicode version

Theorem f1veqaeq 5861
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1veqaeq  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
)

Proof of Theorem f1veqaeq
Dummy variables  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 5860 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d ) ) )
2 fveq2 5599 . . . . . . . 8  |-  ( c  =  C  ->  ( F `  c )  =  ( F `  C ) )
32eqeq1d 2216 . . . . . . 7  |-  ( c  =  C  ->  (
( F `  c
)  =  ( F `
 d )  <->  ( F `  C )  =  ( F `  d ) ) )
4 eqeq1 2214 . . . . . . 7  |-  ( c  =  C  ->  (
c  =  d  <->  C  =  d ) )
53, 4imbi12d 234 . . . . . 6  |-  ( c  =  C  ->  (
( ( F `  c )  =  ( F `  d )  ->  c  =  d )  <->  ( ( F `
 C )  =  ( F `  d
)  ->  C  =  d ) ) )
6 fveq2 5599 . . . . . . . 8  |-  ( d  =  D  ->  ( F `  d )  =  ( F `  D ) )
76eqeq2d 2219 . . . . . . 7  |-  ( d  =  D  ->  (
( F `  C
)  =  ( F `
 d )  <->  ( F `  C )  =  ( F `  D ) ) )
8 eqeq2 2217 . . . . . . 7  |-  ( d  =  D  ->  ( C  =  d  <->  C  =  D ) )
97, 8imbi12d 234 . . . . . 6  |-  ( d  =  D  ->  (
( ( F `  C )  =  ( F `  d )  ->  C  =  d )  <->  ( ( F `
 C )  =  ( F `  D
)  ->  C  =  D ) ) )
105, 9rspc2v 2897 . . . . 5  |-  ( ( C  e.  A  /\  D  e.  A )  ->  ( A. c  e.  A  A. d  e.  A  ( ( F `
 c )  =  ( F `  d
)  ->  c  =  d )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1110com12 30 . . . 4  |-  ( A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d )  ->  ( ( C  e.  A  /\  D  e.  A )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1211adantl 277 . . 3  |-  ( ( F : A --> B  /\  A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d ) )  ->  ( ( C  e.  A  /\  D  e.  A )  ->  ( ( F `  C )  =  ( F `  D )  ->  C  =  D ) ) )
131, 12sylbi 121 . 2  |-  ( F : A -1-1-> B  -> 
( ( C  e.  A  /\  D  e.  A )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1413imp 124 1  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   -->wf 5286   -1-1->wf1 5287   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fv 5298
This theorem is referenced by:  f1fveq  5864  f1ocnvfvrneq  5874  f1o2ndf1  6337  fidceq  6992  difinfsnlem  7227  difinfsn  7228  pr2cv1  7329  iseqf1olemab  10684  iseqf1olemnanb  10685  f1ghm0to0  13723  1dom1el  16126  pwle2  16137
  Copyright terms: Public domain W3C validator