ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1veqaeq Unicode version

Theorem f1veqaeq 5840
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1veqaeq  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
)

Proof of Theorem f1veqaeq
Dummy variables  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 5839 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d ) ) )
2 fveq2 5578 . . . . . . . 8  |-  ( c  =  C  ->  ( F `  c )  =  ( F `  C ) )
32eqeq1d 2214 . . . . . . 7  |-  ( c  =  C  ->  (
( F `  c
)  =  ( F `
 d )  <->  ( F `  C )  =  ( F `  d ) ) )
4 eqeq1 2212 . . . . . . 7  |-  ( c  =  C  ->  (
c  =  d  <->  C  =  d ) )
53, 4imbi12d 234 . . . . . 6  |-  ( c  =  C  ->  (
( ( F `  c )  =  ( F `  d )  ->  c  =  d )  <->  ( ( F `
 C )  =  ( F `  d
)  ->  C  =  d ) ) )
6 fveq2 5578 . . . . . . . 8  |-  ( d  =  D  ->  ( F `  d )  =  ( F `  D ) )
76eqeq2d 2217 . . . . . . 7  |-  ( d  =  D  ->  (
( F `  C
)  =  ( F `
 d )  <->  ( F `  C )  =  ( F `  D ) ) )
8 eqeq2 2215 . . . . . . 7  |-  ( d  =  D  ->  ( C  =  d  <->  C  =  D ) )
97, 8imbi12d 234 . . . . . 6  |-  ( d  =  D  ->  (
( ( F `  C )  =  ( F `  d )  ->  C  =  d )  <->  ( ( F `
 C )  =  ( F `  D
)  ->  C  =  D ) ) )
105, 9rspc2v 2890 . . . . 5  |-  ( ( C  e.  A  /\  D  e.  A )  ->  ( A. c  e.  A  A. d  e.  A  ( ( F `
 c )  =  ( F `  d
)  ->  c  =  d )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1110com12 30 . . . 4  |-  ( A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d )  ->  ( ( C  e.  A  /\  D  e.  A )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1211adantl 277 . . 3  |-  ( ( F : A --> B  /\  A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d ) )  ->  ( ( C  e.  A  /\  D  e.  A )  ->  ( ( F `  C )  =  ( F `  D )  ->  C  =  D ) ) )
131, 12sylbi 121 . 2  |-  ( F : A -1-1-> B  -> 
( ( C  e.  A  /\  D  e.  A )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1413imp 124 1  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   -->wf 5268   -1-1->wf1 5269   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fv 5280
This theorem is referenced by:  f1fveq  5843  f1ocnvfvrneq  5853  f1o2ndf1  6316  fidceq  6968  difinfsnlem  7203  difinfsn  7204  iseqf1olemab  10649  iseqf1olemnanb  10650  f1ghm0to0  13641  1dom1el  15964  pwle2  15972
  Copyright terms: Public domain W3C validator