Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fcof1 | Unicode version |
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
fcof1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 | |
2 | simprr 527 | . . . . . . . 8 | |
3 | 2 | fveq2d 5500 | . . . . . . 7 |
4 | simpll 524 | . . . . . . . 8 | |
5 | simprll 532 | . . . . . . . 8 | |
6 | fvco3 5567 | . . . . . . . 8 | |
7 | 4, 5, 6 | syl2anc 409 | . . . . . . 7 |
8 | simprlr 533 | . . . . . . . 8 | |
9 | fvco3 5567 | . . . . . . . 8 | |
10 | 4, 8, 9 | syl2anc 409 | . . . . . . 7 |
11 | 3, 7, 10 | 3eqtr4d 2213 | . . . . . 6 |
12 | simplr 525 | . . . . . . 7 | |
13 | 12 | fveq1d 5498 | . . . . . 6 |
14 | 12 | fveq1d 5498 | . . . . . 6 |
15 | 11, 13, 14 | 3eqtr3d 2211 | . . . . 5 |
16 | fvresi 5689 | . . . . . 6 | |
17 | 5, 16 | syl 14 | . . . . 5 |
18 | fvresi 5689 | . . . . . 6 | |
19 | 8, 18 | syl 14 | . . . . 5 |
20 | 15, 17, 19 | 3eqtr3d 2211 | . . . 4 |
21 | 20 | expr 373 | . . 3 |
22 | 21 | ralrimivva 2552 | . 2 |
23 | dff13 5747 | . 2 | |
24 | 1, 22, 23 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 cid 4273 cres 4613 ccom 4615 wf 5194 wf1 5195 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fv 5206 |
This theorem is referenced by: fcof1o 5768 |
Copyright terms: Public domain | W3C validator |