ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1 Unicode version

Theorem fcof1 5907
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcof1  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )

Proof of Theorem fcof1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A --> B )
2 simprr 531 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
32fveq2d 5631 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( R `  ( F `  x
) )  =  ( R `  ( F `
 y ) ) )
4 simpll 527 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  F : A
--> B )
5 simprll 537 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  x  e.  A )
6 fvco3 5705 . . . . . . . 8  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( R  o.  F ) `  x
)  =  ( R `
 ( F `  x ) ) )
74, 5, 6syl2anc 411 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( R `  ( F `
 x ) ) )
8 simprlr 538 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  y  e.  A )
9 fvco3 5705 . . . . . . . 8  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( R  o.  F ) `  y
)  =  ( R `
 ( F `  y ) ) )
104, 8, 9syl2anc 411 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  y )  =  ( R `  ( F `
 y ) ) )
113, 7, 103eqtr4d 2272 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( ( R  o.  F
) `  y )
)
12 simplr 528 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( R  o.  F )  =  (  _I  |`  A )
)
1312fveq1d 5629 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( (  _I  |`  A ) `
 x ) )
1412fveq1d 5629 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  y )  =  ( (  _I  |`  A ) `
 y ) )
1511, 13, 143eqtr3d 2270 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  x )  =  ( (  _I  |`  A ) `
 y ) )
16 fvresi 5832 . . . . . 6  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
175, 16syl 14 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  x )  =  x )
18 fvresi 5832 . . . . . 6  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
198, 18syl 14 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  y )  =  y )
2015, 17, 193eqtr3d 2270 . . . 4  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  x  =  y )
2120expr 375 . . 3  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
2221ralrimivva 2612 . 2  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
23 dff13 5892 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
241, 22, 23sylanbrc 417 1  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508    _I cid 4379    |` cres 4721    o. ccom 4723   -->wf 5314   -1-1->wf1 5315   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fv 5326
This theorem is referenced by:  fcof1o  5913
  Copyright terms: Public domain W3C validator