ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1 Unicode version

Theorem fcof1 5751
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcof1  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )

Proof of Theorem fcof1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . 2  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A --> B )
2 simprr 522 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
32fveq2d 5490 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( R `  ( F `  x
) )  =  ( R `  ( F `
 y ) ) )
4 simpll 519 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  F : A
--> B )
5 simprll 527 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  x  e.  A )
6 fvco3 5557 . . . . . . . 8  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( R  o.  F ) `  x
)  =  ( R `
 ( F `  x ) ) )
74, 5, 6syl2anc 409 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( R `  ( F `
 x ) ) )
8 simprlr 528 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  y  e.  A )
9 fvco3 5557 . . . . . . . 8  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( R  o.  F ) `  y
)  =  ( R `
 ( F `  y ) ) )
104, 8, 9syl2anc 409 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  y )  =  ( R `  ( F `
 y ) ) )
113, 7, 103eqtr4d 2208 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( ( R  o.  F
) `  y )
)
12 simplr 520 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( R  o.  F )  =  (  _I  |`  A )
)
1312fveq1d 5488 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( (  _I  |`  A ) `
 x ) )
1412fveq1d 5488 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  y )  =  ( (  _I  |`  A ) `
 y ) )
1511, 13, 143eqtr3d 2206 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  x )  =  ( (  _I  |`  A ) `
 y ) )
16 fvresi 5678 . . . . . 6  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
175, 16syl 14 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  x )  =  x )
18 fvresi 5678 . . . . . 6  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
198, 18syl 14 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  y )  =  y )
2015, 17, 193eqtr3d 2206 . . . 4  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  x  =  y )
2120expr 373 . . 3  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
2221ralrimivva 2548 . 2  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
23 dff13 5736 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
241, 22, 23sylanbrc 414 1  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444    _I cid 4266    |` cres 4606    o. ccom 4608   -->wf 5184   -1-1->wf1 5185   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fv 5196
This theorem is referenced by:  fcof1o  5757
  Copyright terms: Public domain W3C validator