Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fcof1 | Unicode version |
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
fcof1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 | |
2 | simprr 522 | . . . . . . . 8 | |
3 | 2 | fveq2d 5490 | . . . . . . 7 |
4 | simpll 519 | . . . . . . . 8 | |
5 | simprll 527 | . . . . . . . 8 | |
6 | fvco3 5557 | . . . . . . . 8 | |
7 | 4, 5, 6 | syl2anc 409 | . . . . . . 7 |
8 | simprlr 528 | . . . . . . . 8 | |
9 | fvco3 5557 | . . . . . . . 8 | |
10 | 4, 8, 9 | syl2anc 409 | . . . . . . 7 |
11 | 3, 7, 10 | 3eqtr4d 2208 | . . . . . 6 |
12 | simplr 520 | . . . . . . 7 | |
13 | 12 | fveq1d 5488 | . . . . . 6 |
14 | 12 | fveq1d 5488 | . . . . . 6 |
15 | 11, 13, 14 | 3eqtr3d 2206 | . . . . 5 |
16 | fvresi 5678 | . . . . . 6 | |
17 | 5, 16 | syl 14 | . . . . 5 |
18 | fvresi 5678 | . . . . . 6 | |
19 | 8, 18 | syl 14 | . . . . 5 |
20 | 15, 17, 19 | 3eqtr3d 2206 | . . . 4 |
21 | 20 | expr 373 | . . 3 |
22 | 21 | ralrimivva 2548 | . 2 |
23 | dff13 5736 | . 2 | |
24 | 1, 22, 23 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cid 4266 cres 4606 ccom 4608 wf 5184 wf1 5185 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fv 5196 |
This theorem is referenced by: fcof1o 5757 |
Copyright terms: Public domain | W3C validator |