ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst6 Unicode version

Theorem fconst6 5524
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
fconst6.1  |-  B  e.  C
Assertion
Ref Expression
fconst6  |-  ( A  X.  { B }
) : A --> C

Proof of Theorem fconst6
StepHypRef Expression
1 fconst6.1 . 2  |-  B  e.  C
2 fconst6g 5523 . 2  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> C )
31, 2ax-mp 5 1  |-  ( A  X.  { B }
) : A --> C
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   {csn 3666    X. cxp 4716   -->wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321
This theorem is referenced by:  0ct  7270  ctm  7272  infnninfOLD  7288  exmidomni  7305  ofnegsub  9105  0nninf  16329  exmidsbthrlem  16349
  Copyright terms: Public domain W3C validator