ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst6 Unicode version

Theorem fconst6 5369
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
fconst6.1  |-  B  e.  C
Assertion
Ref Expression
fconst6  |-  ( A  X.  { B }
) : A --> C

Proof of Theorem fconst6
StepHypRef Expression
1 fconst6.1 . 2  |-  B  e.  C
2 fconst6g 5368 . 2  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> C )
31, 2ax-mp 5 1  |-  ( A  X.  { B }
) : A --> C
Colors of variables: wff set class
Syntax hints:    e. wcel 2128   {csn 3560    X. cxp 4584   -->wf 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-fun 5172  df-fn 5173  df-f 5174
This theorem is referenced by:  0ct  7051  ctm  7053  infnninfOLD  7068  exmidomni  7085  0nninf  13587  exmidsbthrlem  13604
  Copyright terms: Public domain W3C validator