ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst6 Unicode version

Theorem fconst6 5474
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
fconst6.1  |-  B  e.  C
Assertion
Ref Expression
fconst6  |-  ( A  X.  { B }
) : A --> C

Proof of Theorem fconst6
StepHypRef Expression
1 fconst6.1 . 2  |-  B  e.  C
2 fconst6g 5473 . 2  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> C )
31, 2ax-mp 5 1  |-  ( A  X.  { B }
) : A --> C
Colors of variables: wff set class
Syntax hints:    e. wcel 2175   {csn 3632    X. cxp 4672   -->wf 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-fun 5272  df-fn 5273  df-f 5274
This theorem is referenced by:  0ct  7208  ctm  7210  infnninfOLD  7226  exmidomni  7243  ofnegsub  9034  0nninf  15903  exmidsbthrlem  15923
  Copyright terms: Public domain W3C validator