ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctm Unicode version

Theorem ctm 6962
Description: Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
ctm  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. f  f : om -onto-> A ) )
Distinct variable group:    A, f, x

Proof of Theorem ctm
Dummy variables  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5373 . . . . . . . . . . 11  |-  (  _I  |`  A ) : A -1-1-onto-> A
2 f1of 5335 . . . . . . . . . . 11  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  ->  (  _I  |`  A ) : A --> A )
31, 2mp1i 10 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (  _I  |`  A ) : A --> A )
4 fconst6g 5291 . . . . . . . . . . 11  |-  ( x  e.  A  ->  ( 1o  X.  { x }
) : 1o --> A )
54adantr 274 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  ( 1o  X.  { x }
) : 1o --> A )
63, 5casef 6941 . . . . . . . . 9  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  -> case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) : ( A 1o ) --> A )
7 ffun 5245 . . . . . . . . 9  |-  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) : ( A 1o ) --> A  ->  Fun case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) )
86, 7syl 14 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  Fun case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) )
9 vex 2663 . . . . . . . . 9  |-  f  e. 
_V
109a1i 9 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  f  e.  _V )
11 cofunexg 5977 . . . . . . . 8  |-  ( ( Fun case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  /\  f  e.  _V )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  e.  _V )
128, 10, 11syl2anc 408 . . . . . . 7  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  e.  _V )
13 fof 5315 . . . . . . . . . 10  |-  ( f : om -onto-> ( A 1o )  ->  f : om --> ( A 1o ) )
1413adantl 275 . . . . . . . . 9  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  f : om --> ( A 1o ) )
15 fco 5258 . . . . . . . . 9  |-  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) : ( A 1o ) --> A  /\  f : om --> ( A 1o ) )  ->  (case (
(  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om --> A )
166, 14, 15syl2anc 408 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om --> A )
17 simplr 504 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  f : om -onto-> ( A 1o ) )
18 djulcl 6904 . . . . . . . . . . . 12  |-  ( y  e.  A  ->  (inl `  y )  e.  ( A 1o ) )
1918adantl 275 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  (inl `  y )  e.  ( A 1o )
)
20 foelrn 5622 . . . . . . . . . . 11  |-  ( ( f : om -onto-> ( A 1o )  /\  (inl `  y )  e.  ( A 1o ) )  ->  E. z  e.  om  (inl `  y )  =  ( f `  z
) )
2117, 19, 20syl2anc 408 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  E. z  e.  om  (inl `  y )  =  ( f `  z
) )
22 fofn 5317 . . . . . . . . . . . . . . . 16  |-  ( f : om -onto-> ( A 1o )  ->  f  Fn 
om )
2322ad4antlr 486 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  f  Fn  om )
24 simplr 504 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  z  e.  om )
25 fvco2 5458 . . . . . . . . . . . . . . 15  |-  ( ( f  Fn  om  /\  z  e.  om )  ->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z )  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  ( f `  z
) ) )
2623, 24, 25syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z )  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  ( f `  z
) ) )
27 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (inl `  y
)  =  ( f `
 z ) )
2827fveq2d 5393 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (case (
(  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  (inl `  y ) )  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  ( f `  z
) ) )
29 fnresi 5210 . . . . . . . . . . . . . . . 16  |-  (  _I  |`  A )  Fn  A
3029a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (  _I  |`  A )  Fn  A
)
31 vex 2663 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
3231fconst6 5292 . . . . . . . . . . . . . . . 16  |-  ( 1o 
X.  { x }
) : 1o --> _V
33 ffun 5245 . . . . . . . . . . . . . . . 16  |-  ( ( 1o  X.  { x } ) : 1o --> _V  ->  Fun  ( 1o  X.  { x } ) )
3432, 33mp1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  Fun  ( 1o 
X.  { x }
) )
35 simpllr 508 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  y  e.  A )
3630, 34, 35caseinl 6944 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (case (
(  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  (inl `  y ) )  =  ( (  _I  |`  A ) `
 y ) )
3726, 28, 363eqtr2d 2156 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z )  =  ( (  _I  |`  A ) `
 y ) )
38 fvresi 5581 . . . . . . . . . . . . . 14  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
3935, 38syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  ( (  _I  |`  A ) `  y )  =  y )
4037, 39eqtr2d 2151 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `  z
) )
4140ex 114 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  ->  (
(inl `  y )  =  ( f `  z )  ->  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) ) )
4241reximdva 2511 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  ( E. z  e. 
om  (inl `  y
)  =  ( f `
 z )  ->  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) ) )
4321, 42mpd 13 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) )
4443ralrimiva 2482 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  A. y  e.  A  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `  z
) )
45 dffo3 5535 . . . . . . . 8  |-  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A  <->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om --> A  /\  A. y  e.  A  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) ) )
4616, 44, 45sylanbrc 413 . . . . . . 7  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A )
47 foeq1 5311 . . . . . . . 8  |-  ( g  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  ->  ( g : om -onto-> A  <->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A ) )
4847spcegv 2748 . . . . . . 7  |-  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  e.  _V  ->  (
(case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A  ->  E. g  g : om -onto-> A ) )
4912, 46, 48sylc 62 . . . . . 6  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  E. g 
g : om -onto-> A
)
5049ex 114 . . . . 5  |-  ( x  e.  A  ->  (
f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> A
) )
5150exlimiv 1562 . . . 4  |-  ( E. x  x  e.  A  ->  ( f : om -onto->
( A 1o )  ->  E. g  g : om -onto-> A ) )
5251exlimdv 1775 . . 3  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> A
) )
53 foeq1 5311 . . . 4  |-  ( f  =  g  ->  (
f : om -onto-> A  <->  g : om -onto-> A ) )
5453cbvexv 1872 . . 3  |-  ( E. f  f : om -onto-> A 
<->  E. g  g : om -onto-> A )
5552, 54syl6ibr 161 . 2  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. f 
f : om -onto-> A
) )
56 ctmlemr 6961 . 2  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> A  ->  E. f  f : om -onto-> ( A 1o ) ) )
5755, 56impbid 128 1  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. f  f : om -onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316   E.wex 1453    e. wcel 1465   A.wral 2393   E.wrex 2394   _Vcvv 2660   {csn 3497    _I cid 4180   omcom 4474    X. cxp 4507    |` cres 4511    o. ccom 4513   Fun wfun 5087    Fn wfn 5088   -->wf 5089   -onto->wfo 5091   -1-1-onto->wf1o 5092   ` cfv 5093   1oc1o 6274   ⊔ cdju 6890  inlcinl 6898  casecdjucase 6936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-1st 6006  df-2nd 6007  df-1o 6281  df-dju 6891  df-inl 6900  df-inr 6901  df-case 6937
This theorem is referenced by:  ctssdc  6966  enumct  6968  omct  6970
  Copyright terms: Public domain W3C validator