ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctm Unicode version

Theorem ctm 7086
Description: Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
ctm  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. f  f : om -onto-> A ) )
Distinct variable group:    A, f, x

Proof of Theorem ctm
Dummy variables  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5480 . . . . . . . . . . 11  |-  (  _I  |`  A ) : A -1-1-onto-> A
2 f1of 5442 . . . . . . . . . . 11  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  ->  (  _I  |`  A ) : A --> A )
31, 2mp1i 10 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (  _I  |`  A ) : A --> A )
4 fconst6g 5396 . . . . . . . . . . 11  |-  ( x  e.  A  ->  ( 1o  X.  { x }
) : 1o --> A )
54adantr 274 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  ( 1o  X.  { x }
) : 1o --> A )
63, 5casef 7065 . . . . . . . . 9  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  -> case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) : ( A 1o ) --> A )
7 ffun 5350 . . . . . . . . 9  |-  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) : ( A 1o ) --> A  ->  Fun case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) )
86, 7syl 14 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  Fun case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) )
9 vex 2733 . . . . . . . . 9  |-  f  e. 
_V
109a1i 9 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  f  e.  _V )
11 cofunexg 6088 . . . . . . . 8  |-  ( ( Fun case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  /\  f  e.  _V )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  e.  _V )
128, 10, 11syl2anc 409 . . . . . . 7  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  e.  _V )
13 fof 5420 . . . . . . . . . 10  |-  ( f : om -onto-> ( A 1o )  ->  f : om --> ( A 1o ) )
1413adantl 275 . . . . . . . . 9  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  f : om --> ( A 1o ) )
15 fco 5363 . . . . . . . . 9  |-  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) : ( A 1o ) --> A  /\  f : om --> ( A 1o ) )  ->  (case (
(  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om --> A )
166, 14, 15syl2anc 409 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om --> A )
17 simplr 525 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  f : om -onto-> ( A 1o ) )
18 djulcl 7028 . . . . . . . . . . . 12  |-  ( y  e.  A  ->  (inl `  y )  e.  ( A 1o ) )
1918adantl 275 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  (inl `  y )  e.  ( A 1o )
)
20 foelrn 5732 . . . . . . . . . . 11  |-  ( ( f : om -onto-> ( A 1o )  /\  (inl `  y )  e.  ( A 1o ) )  ->  E. z  e.  om  (inl `  y )  =  ( f `  z
) )
2117, 19, 20syl2anc 409 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  E. z  e.  om  (inl `  y )  =  ( f `  z
) )
22 fofn 5422 . . . . . . . . . . . . . . . 16  |-  ( f : om -onto-> ( A 1o )  ->  f  Fn 
om )
2322ad4antlr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  f  Fn  om )
24 simplr 525 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  z  e.  om )
25 fvco2 5565 . . . . . . . . . . . . . . 15  |-  ( ( f  Fn  om  /\  z  e.  om )  ->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z )  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  ( f `  z
) ) )
2623, 24, 25syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z )  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  ( f `  z
) ) )
27 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (inl `  y
)  =  ( f `
 z ) )
2827fveq2d 5500 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (case (
(  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  (inl `  y ) )  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  ( f `  z
) ) )
29 fnresi 5315 . . . . . . . . . . . . . . . 16  |-  (  _I  |`  A )  Fn  A
3029a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (  _I  |`  A )  Fn  A
)
31 vex 2733 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
3231fconst6 5397 . . . . . . . . . . . . . . . 16  |-  ( 1o 
X.  { x }
) : 1o --> _V
33 ffun 5350 . . . . . . . . . . . . . . . 16  |-  ( ( 1o  X.  { x } ) : 1o --> _V  ->  Fun  ( 1o  X.  { x } ) )
3432, 33mp1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  Fun  ( 1o 
X.  { x }
) )
35 simpllr 529 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  y  e.  A )
3630, 34, 35caseinl 7068 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (case (
(  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  (inl `  y ) )  =  ( (  _I  |`  A ) `
 y ) )
3726, 28, 363eqtr2d 2209 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z )  =  ( (  _I  |`  A ) `
 y ) )
38 fvresi 5689 . . . . . . . . . . . . . 14  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
3935, 38syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  ( (  _I  |`  A ) `  y )  =  y )
4037, 39eqtr2d 2204 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `  z
) )
4140ex 114 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  ->  (
(inl `  y )  =  ( f `  z )  ->  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) ) )
4241reximdva 2572 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  ( E. z  e. 
om  (inl `  y
)  =  ( f `
 z )  ->  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) ) )
4321, 42mpd 13 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) )
4443ralrimiva 2543 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  A. y  e.  A  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `  z
) )
45 dffo3 5643 . . . . . . . 8  |-  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A  <->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om --> A  /\  A. y  e.  A  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) ) )
4616, 44, 45sylanbrc 415 . . . . . . 7  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A )
47 foeq1 5416 . . . . . . . 8  |-  ( g  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  ->  ( g : om -onto-> A  <->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A ) )
4847spcegv 2818 . . . . . . 7  |-  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  e.  _V  ->  (
(case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A  ->  E. g  g : om -onto-> A ) )
4912, 46, 48sylc 62 . . . . . 6  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  E. g 
g : om -onto-> A
)
5049ex 114 . . . . 5  |-  ( x  e.  A  ->  (
f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> A
) )
5150exlimiv 1591 . . . 4  |-  ( E. x  x  e.  A  ->  ( f : om -onto->
( A 1o )  ->  E. g  g : om -onto-> A ) )
5251exlimdv 1812 . . 3  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> A
) )
53 foeq1 5416 . . . 4  |-  ( f  =  g  ->  (
f : om -onto-> A  <->  g : om -onto-> A ) )
5453cbvexv 1911 . . 3  |-  ( E. f  f : om -onto-> A 
<->  E. g  g : om -onto-> A )
5552, 54syl6ibr 161 . 2  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. f 
f : om -onto-> A
) )
56 ctmlemr 7085 . 2  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> A  ->  E. f  f : om -onto-> ( A 1o ) ) )
5755, 56impbid 128 1  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. f  f : om -onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   _Vcvv 2730   {csn 3583    _I cid 4273   omcom 4574    X. cxp 4609    |` cres 4613    o. ccom 4615   Fun wfun 5192    Fn wfn 5193   -->wf 5194   -onto->wfo 5196   -1-1-onto->wf1o 5197   ` cfv 5198   1oc1o 6388   ⊔ cdju 7014  inlcinl 7022  casecdjucase 7060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  ctssdc  7090  enumct  7092  omct  7094  unbendc  12409  pw1nct  14036
  Copyright terms: Public domain W3C validator