ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctm Unicode version

Theorem ctm 6909
Description: Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
ctm  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. f  f : om -onto-> A ) )
Distinct variable group:    A, f, x

Proof of Theorem ctm
Dummy variables  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5339 . . . . . . . . . . 11  |-  (  _I  |`  A ) : A -1-1-onto-> A
2 f1of 5301 . . . . . . . . . . 11  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  ->  (  _I  |`  A ) : A --> A )
31, 2mp1i 10 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (  _I  |`  A ) : A --> A )
4 fconst6g 5257 . . . . . . . . . . 11  |-  ( x  e.  A  ->  ( 1o  X.  { x }
) : 1o --> A )
54adantr 272 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  ( 1o  X.  { x }
) : 1o --> A )
63, 5casef 6888 . . . . . . . . 9  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  -> case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) : ( A 1o ) --> A )
7 ffun 5211 . . . . . . . . 9  |-  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) : ( A 1o ) --> A  ->  Fun case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) )
86, 7syl 14 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  Fun case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) )
9 vex 2644 . . . . . . . . 9  |-  f  e. 
_V
109a1i 9 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  f  e.  _V )
11 cofunexg 5940 . . . . . . . 8  |-  ( ( Fun case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  /\  f  e.  _V )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  e.  _V )
128, 10, 11syl2anc 406 . . . . . . 7  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  e.  _V )
13 fof 5281 . . . . . . . . . 10  |-  ( f : om -onto-> ( A 1o )  ->  f : om --> ( A 1o ) )
1413adantl 273 . . . . . . . . 9  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  f : om --> ( A 1o ) )
15 fco 5224 . . . . . . . . 9  |-  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) : ( A 1o ) --> A  /\  f : om --> ( A 1o ) )  ->  (case (
(  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om --> A )
166, 14, 15syl2anc 406 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om --> A )
17 simplr 500 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  f : om -onto-> ( A 1o ) )
18 djulcl 6851 . . . . . . . . . . . 12  |-  ( y  e.  A  ->  (inl `  y )  e.  ( A 1o ) )
1918adantl 273 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  (inl `  y )  e.  ( A 1o )
)
20 foelrn 5586 . . . . . . . . . . 11  |-  ( ( f : om -onto-> ( A 1o )  /\  (inl `  y )  e.  ( A 1o ) )  ->  E. z  e.  om  (inl `  y )  =  ( f `  z
) )
2117, 19, 20syl2anc 406 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  E. z  e.  om  (inl `  y )  =  ( f `  z
) )
22 fofn 5283 . . . . . . . . . . . . . . . 16  |-  ( f : om -onto-> ( A 1o )  ->  f  Fn 
om )
2322ad4antlr 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  f  Fn  om )
24 simplr 500 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  z  e.  om )
25 fvco2 5422 . . . . . . . . . . . . . . 15  |-  ( ( f  Fn  om  /\  z  e.  om )  ->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z )  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  ( f `  z
) ) )
2623, 24, 25syl2anc 406 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z )  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  ( f `  z
) ) )
27 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (inl `  y
)  =  ( f `
 z ) )
2827fveq2d 5357 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (case (
(  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  (inl `  y ) )  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  ( f `  z
) ) )
29 fnresi 5176 . . . . . . . . . . . . . . . 16  |-  (  _I  |`  A )  Fn  A
3029a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (  _I  |`  A )  Fn  A
)
31 vex 2644 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
3231fconst6 5258 . . . . . . . . . . . . . . . 16  |-  ( 1o 
X.  { x }
) : 1o --> _V
33 ffun 5211 . . . . . . . . . . . . . . . 16  |-  ( ( 1o  X.  { x } ) : 1o --> _V  ->  Fun  ( 1o  X.  { x } ) )
3432, 33mp1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  Fun  ( 1o 
X.  { x }
) )
35 simpllr 504 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  y  e.  A )
3630, 34, 35caseinl 6891 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  (case (
(  _I  |`  A ) ,  ( 1o  X.  { x } ) ) `  (inl `  y ) )  =  ( (  _I  |`  A ) `
 y ) )
3726, 28, 363eqtr2d 2138 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z )  =  ( (  _I  |`  A ) `
 y ) )
38 fvresi 5545 . . . . . . . . . . . . . 14  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
3935, 38syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  ( (  _I  |`  A ) `  y )  =  y )
4037, 39eqtr2d 2133 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  /\  (inl `  y )  =  ( f `  z ) )  ->  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `  z
) )
4140ex 114 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  /\  z  e.  om )  ->  (
(inl `  y )  =  ( f `  z )  ->  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) ) )
4241reximdva 2493 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  ( E. z  e. 
om  (inl `  y
)  =  ( f `
 z )  ->  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) ) )
4321, 42mpd 13 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  /\  y  e.  A )  ->  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) )
4443ralrimiva 2464 . . . . . . . 8  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  A. y  e.  A  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `  z
) )
45 dffo3 5499 . . . . . . . 8  |-  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A  <->  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om --> A  /\  A. y  e.  A  E. z  e.  om  y  =  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) `
 z ) ) )
4616, 44, 45sylanbrc 411 . . . . . . 7  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A )
47 foeq1 5277 . . . . . . . 8  |-  ( g  =  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  ->  ( g : om -onto-> A  <->  (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A ) )
4847spcegv 2729 . . . . . . 7  |-  ( (case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f )  e.  _V  ->  (
(case ( (  _I  |`  A ) ,  ( 1o  X.  { x } ) )  o.  f ) : om -onto-> A  ->  E. g  g : om -onto-> A ) )
4912, 46, 48sylc 62 . . . . . 6  |-  ( ( x  e.  A  /\  f : om -onto-> ( A 1o ) )  ->  E. g 
g : om -onto-> A
)
5049ex 114 . . . . 5  |-  ( x  e.  A  ->  (
f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> A
) )
5150exlimiv 1545 . . . 4  |-  ( E. x  x  e.  A  ->  ( f : om -onto->
( A 1o )  ->  E. g  g : om -onto-> A ) )
5251exlimdv 1758 . . 3  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> A
) )
53 foeq1 5277 . . . 4  |-  ( f  =  g  ->  (
f : om -onto-> A  <->  g : om -onto-> A ) )
5453cbvexv 1855 . . 3  |-  ( E. f  f : om -onto-> A 
<->  E. g  g : om -onto-> A )
5552, 54syl6ibr 161 . 2  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. f 
f : om -onto-> A
) )
56 ctmlemr 6908 . 2  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> A  ->  E. f  f : om -onto-> ( A 1o ) ) )
5755, 56impbid 128 1  |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. f  f : om -onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299   E.wex 1436    e. wcel 1448   A.wral 2375   E.wrex 2376   _Vcvv 2641   {csn 3474    _I cid 4148   omcom 4442    X. cxp 4475    |` cres 4479    o. ccom 4481   Fun wfun 5053    Fn wfn 5054   -->wf 5055   -onto->wfo 5057   -1-1-onto->wf1o 5058   ` cfv 5059   1oc1o 6236   ⊔ cdju 6837  inlcinl 6845  casecdjucase 6883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-1st 5969  df-2nd 5970  df-1o 6243  df-dju 6838  df-inl 6847  df-inr 6848  df-case 6884
This theorem is referenced by:  ctssdc  6912  enumct  6914
  Copyright terms: Public domain W3C validator