Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fconst6 | GIF version |
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.) |
Ref | Expression |
---|---|
fconst6.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
fconst6 | ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
2 | fconst6g 5394 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 {csn 3581 × cxp 4607 ⟶wf 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-fun 5198 df-fn 5199 df-f 5200 |
This theorem is referenced by: 0ct 7082 ctm 7084 infnninfOLD 7099 exmidomni 7116 0nninf 14002 exmidsbthrlem 14019 |
Copyright terms: Public domain | W3C validator |