ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst6 GIF version

Theorem fconst6 5484
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
fconst6.1 𝐵𝐶
Assertion
Ref Expression
fconst6 (𝐴 × {𝐵}):𝐴𝐶

Proof of Theorem fconst6
StepHypRef Expression
1 fconst6.1 . 2 𝐵𝐶
2 fconst6g 5483 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
31, 2ax-mp 5 1 (𝐴 × {𝐵}):𝐴𝐶
Colors of variables: wff set class
Syntax hints:  wcel 2177  {csn 3635   × cxp 4678  wf 5273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-fun 5279  df-fn 5280  df-f 5281
This theorem is referenced by:  0ct  7221  ctm  7223  infnninfOLD  7239  exmidomni  7256  ofnegsub  9048  0nninf  16056  exmidsbthrlem  16076
  Copyright terms: Public domain W3C validator