| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconst6g | Unicode version | ||
| Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fconst6g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 5472 |
. 2
| |
| 2 | snssi 3777 |
. 2
| |
| 3 | fss 5437 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-fun 5273 df-fn 5274 df-f 5275 |
| This theorem is referenced by: fconst6 5475 map0g 6775 fdiagfn 6779 mapsncnv 6782 ctm 7211 pwsdiagel 13129 pwsmnd 13282 pws0g 13283 0mhm 13318 pwsgrp 13443 pwsinvg 13444 psr0cl 14443 lmconst 14688 cnconst2 14705 dvconst 15166 dvconstre 15168 dvconstss 15170 |
| Copyright terms: Public domain | W3C validator |