ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst6g Unicode version

Theorem fconst6g 5426
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fconst6g  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> C )

Proof of Theorem fconst6g
StepHypRef Expression
1 fconstg 5424 . 2  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> { B } )
2 snssi 3748 . 2  |-  ( B  e.  C  ->  { B }  C_  C )
3 fss 5389 . 2  |-  ( ( ( A  X.  { B } ) : A --> { B }  /\  { B }  C_  C )  ->  ( A  X.  { B } ) : A --> C )
41, 2, 3syl2anc 411 1  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2158    C_ wss 3141   {csn 3604    X. cxp 4636   -->wf 5224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-fun 5230  df-fn 5231  df-f 5232
This theorem is referenced by:  fconst6  5427  map0g  6702  fdiagfn  6706  mapsncnv  6709  ctm  7122  0mhm  12895  lmconst  14012  cnconst2  14029  dvconst  14457
  Copyright terms: Public domain W3C validator