ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmeu Unicode version

Theorem fdmeu 5677
Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.)
Assertion
Ref Expression
fdmeu  |-  ( ( F : A --> B  /\  X  e.  A )  ->  E! y  e.  B  ( F `  X )  =  y )
Distinct variable groups:    y, A    y, B    y, F    y, X

Proof of Theorem fdmeu
StepHypRef Expression
1 feu 5508 . 2  |-  ( ( F : A --> B  /\  X  e.  A )  ->  E! y  e.  B  <. X ,  y >.  e.  F )
2 ffn 5473 . . . . . 6  |-  ( F : A --> B  ->  F  Fn  A )
32anim1i 340 . . . . 5  |-  ( ( F : A --> B  /\  X  e.  A )  ->  ( F  Fn  A  /\  X  e.  A
) )
43adantr 276 . . . 4  |-  ( ( ( F : A --> B  /\  X  e.  A
)  /\  y  e.  B )  ->  ( F  Fn  A  /\  X  e.  A )
)
5 fnopfvb 5673 . . . 4  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F `  X )  =  y  <->  <. X ,  y >.  e.  F ) )
64, 5syl 14 . . 3  |-  ( ( ( F : A --> B  /\  X  e.  A
)  /\  y  e.  B )  ->  (
( F `  X
)  =  y  <->  <. X , 
y >.  e.  F ) )
76reubidva 2715 . 2  |-  ( ( F : A --> B  /\  X  e.  A )  ->  ( E! y  e.  B  ( F `  X )  =  y  <-> 
E! y  e.  B  <. X ,  y >.  e.  F ) )
81, 7mpbird 167 1  |-  ( ( F : A --> B  /\  X  e.  A )  ->  E! y  e.  B  ( F `  X )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E!wreu 2510   <.cop 3669    Fn wfn 5313   -->wf 5314   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326
This theorem is referenced by:  uspgriedgedg  15977
  Copyright terms: Public domain W3C validator